
A Scalable P2P RIA Crawling System with
Partial Knowledge

Khaled Ben Hafaiedh?, Gregor von Bochmann, Guy-Vincent Jourdan, and Iosif
Viorel Onut

EECS, University of Ottawa, Ottawa, Ontario, Canada
hafaiedh.khaled@uottawa.ca, {bochmann,gvj}@eecs.uottawa.ca,

vioonut@ca.ibm.com

http://ssrg.site.uottawa.ca/

Abstract. Rich Internet Applications are widely used as they are in-
teractive and user friendly. Automated tools for crawling Rich Internet
Applications have become needed for many reasons such as content in-
dexing or testing for correctness and security. Due to the large size of
RIAs, distributed crawling has been introduced to reduce the amount
of time required for crawling. However, having one controller may result
in a performance bottleneck resulting from a single database simultane-
ously accessed by many crawlers. It may also be vulnerable to complete
data loss if a node failure occurs at the storage unit. We present a dis-
tributed decentralized scheme for crawling large-scale RIAs capable of
partitioning the search space among several controllers in which the in-
formation is partially stored, which allows for fault tolerance and for
the scalability of the system. Our results are significantly better than
for non-distributed crawling, and outperforms the distributed crawling
using one coordinator.

Key words: Rich Internet Applications, Web Crawling, Web Applica-
tion Modeling, Graph Exploration, Distributed Crawling, P2P networks.

1 Introduction

As the web has evolved towards dynamic content, modern web technologies gave
birth to interactive and more responsive applications, referred to as Rich Internet
Applications [4], which combine client-side scripting with new features such as
AJAX (Asynchronous JavaScript and XML) [6] [2], allowing the client to asyn-
chronously modify the currently displayed page. Exploring a RIA is referred to as
event-based crawling. Automated event-based crawling [3] automatically explores
all events by traveling each of the possible user-interactions within the given
page, where each page is represented by its Document Object Model (DOM)
[12].

In the context of RIAs, a study [1] has been conducted in a centralized en-
vironment to store states within a single coordinator. This central hub has the

? hafaiedh.khaled@uottawa.ca, bochmann, gvj@eecs.uottawa.ca, vioonut@ca.ibm.com



2 EECS, University of Ottawa, Ottawa, Ontario, Canada

responsibility of partitioning the task of crawling RIAs among multiple crawlers.
We address the scalability and resilience problems when crawling RIAs by dis-
tributing states in a P2P network composed of multiple coordinators, where each
coordinator maintains a list of states and is associated with a set of crawlers.

The proposed decentralized architecture for crawling RIAs is challenging for
two reasons: (1) Crawlers may have to go through a path of ordered states before
exploring a new transition. If the states are partitioned among multiple coordi-
nators, it is unsuitable to communicate with all coordinators that are associated
with the states in this path. (2) Traversing a long path before executing a new
state is costly. Some coordination between the coordinators needs to be per-
formed to allow crawlers to execute new transitions while the length of the path
to reach each of these transitions is minimized.

To our knowledge, crawling large-scale RIAs over P2P networks while min-
imizing the cost (number of event executions), where coordinators maintain a
partial knowledge of the application model has not been investigated yet. We
make the following contributions:

– The distribution of responsibilities for the states among multiple coordina-
tors in the underlying P2P network, where each coordinator maintains a
portion of the application model, and a high number of crawlers are associ-
ated with each coordinator, which allows for scalability.

– Defining and comparing different knowledge sharing schemes for efficiently
crawling RIAs in the P2P network.

The rest of this paper is organized as follows: Section 2 gives an overview of
the distributed RIA crawling. Section 3 introduces the distributed P2P Archi-
tecture for Crawling RIAs with partial knowledge. The decentralized distributed
greedy strategy and the P2P crawling protocol are also described. Section 4 intro-
duces different knowledge sharing schemes for efficiently crawling RIAs. Finally,
Section 5 describes the results of our simulation study and compares the effi-
ciency of our exploration mechanisms. A conclusion is provided in the end of the
paper with some future directions for improvements.

2 Overview of the Distributed Decentralized RIA
Crawling

2.1 Traditional Web Crawling

The typical interaction between client and server in a traditional web application
consists of sending a request for a URL so that the corresponding web page is
returned in response. Thus, each web page is identified by its URL. Crawling
a traditional web application consists of finding all its URLs [10]. Improving
both scalability and efficiency of crawling traditional web applications may be
achieved by partitioning the task of the crawl among multiple crawlers in a
distributed network. Distributed crawling allows each crawler to explore only a



A Scalable P2P RIA Crawling System with Partial Knowledge 3

portion of the search space by contacting one or more units, which are respon-
sible for storing and distributing the graph exploration task, referred to as the
coordinator.

Different approaches have been used to concurrently crawl traditional web
applications [7]. In a centralized environment, a single unit is responsible for
storing a list of the newly discovered URLs and gives the instruction of loading
each unexplored URL to an idle crawler [10]. An alternative has been proposed
in a P2P [8] network in order to partition URLs among several coordinators
by means of a Distributed Hash Table (DHT) [5] [14] where each coordinator
maintains a portion of the application model so that there is no single point of
failure.

2.2 RIA Crawling with one Single Crawler

In contrast to traditional web applications where each state represents a single
URL, states represent the distinct pages within the same URL in a RIA model
[3], while transitions illustrate the possible ways to move from one page to an-
other. Consequently, a graph with a high number of states can be derived for
each single URL in a RIA. Formally speaking, the task of crawling a RIA con-
sists of finding all distinct states for each seed URL [3], where the initial state
corresponds to the initial page that is reached from loading the seed URL. The
triple (SourceState, event,DestinationState) describes a transition in the RIA
model, and event describes a possible user-interaction within a source state and
leading to a destination state. The basic greedy strategy with a single crawler
consists of exploring an event from the current state if there is any unexplored
event. Otherwise, the crawler executes an unexplored event from another state
by either performing a reset, i.e. returning to the initial state and retracing the
steps that lead to this state [4], or by using a shortest path algorithm [13] to
find the closest state with an unexecuted event without necessarily performing
a reset.

2.3 Distributed Centralized RIA Crawling

A distributed centralized scheme [1] for crawling RIAs has been recently intro-
duced with the aim of reducing the required amount of time to crawl RIAs,
by allowing multiple crawlers to crawl a given RIA simultaneously. In this sys-
tem, all states are maintained by a single entity, the coordinator. This entity
is responsible for storing information about the new discovered states including
the unexecuted events on each state. All crawlers are associated with the single
coordinator. That is, each crawler may retrieve the required graph information
by communicating with the single coordinator, and then executes a single un-
executed event from its current state if such an event exists, or may move to
another state with some unexecuted events based on the information available
in the database. A shortest path algorithm is performed by the coordinator to
find the closest state with an unexecuted event of a given crawler.



4 EECS, University of Ottawa, Ottawa, Ontario, Canada

However, maintaining the states within a single unit may be problematic
for the following reasons: (1) Scalability: Preliminary analysis of experimental
results [1] have shown that a coordinator can support up to only 20 crawlers
without becoming overloaded. (2) Fault tolerance: A failure occurring within
this unit may result in the entire loss of the graph under exploration.

2.4 Distributed Decentralized RIA Crawling

In this paper, we propose a P2P chordal ring structure [9] that is composed of
multiple coordinators that are dispersed over the P2P network as shown in Fig.1.
Moreover, a set of crawlers is associated with each coordinator, where crawlers
and coordinators are independent processes running on different computers.

Fig. 1: Distribution of states and crawlers among coordinators: Each state is associated
with one coordinator, and each crawler gets access to all coordinators through a single
coordinator it is associated with.

3 Distributed P2P Architecture for Crawling RIAs with
partial knowledge

3.1 The decentralized distributed greedy strategy:

In the P2P environment, states are partitioned among the coordinators. The
coordinator responsible for storing the information about a state is contacted
when a crawler reaches a new state. For each request, the coordinator returns in
response a single event to execute on this state.

However, if there is no event to execute on the current state of a visiting
crawler, the coordinator associated with this state may look for another state
with an unexecuted event among all states it is responsible for. Notice that
maintaining a possible path from the initial state to a target state within the
coordinator is necessary in RIA crawling as coordinators must be able to tell
each visiting crawler how to reach a particular state starting from the initial
state.



A Scalable P2P RIA Crawling System with Partial Knowledge 5

3.2 Protocol description:

Data-Structures:

– State: This represents a state of the application and has the following vari-
ables:
• Integer stateID: The identifier of this state.
• Set < Transition > myTransitions : The set of transitions that can be

executed from this state.
• (initial URL, Sequence < Transition >) path: A pair of the initial URL

and a sequence of transitions describing a path to this state from the
initial state.

– Transition: This represents a transition of the application and has the fol-
lowing variables:
• Enumeration status: (unexecuted, assigned, executed):

1. unexecuted: This is the initial status of the transition.
2. assigned: A transition is assigned to a crawler.
3. executed: The transition has been executed.

• Integer eventID: The identifier of the JavaScript event on this transition.
• Integer destStateID: The identifier of the destination State of this tran-

sition. It is null if its status is not executed.

Processes: We describe the processes involved during the crawl.

– Crawler: Crawlers are only responsible for executing JavaScript events in a
RIA. Each crawler has the following variables:
• Address myAddress: The address of the crawler.
• Address myCoordinator: The address of the coordinator that is associ-

ated with this crawler.
– Coordinator: Coordinators are responsible for storing states and coordi-

nating the crawling task. Each coordinator has the following variables:
• Address myAddress: The address of the coordinator.
• Set < State > myDiscoveredStates: The discovered states that belong

to this coordinator.
• String URL: The seed URL to be loaded when a reset is performed.

Exchanged messages: The following section describes the different type of
messages that are exchanged between controllers and crawlers during the crawl.
Each message type has the form (destination, source, messageInformation)

– destination: This identifies the destination process. It is either an address
, or an identifier, as follows:
• AdressedByAddress: This is when a message is sent directly to a

known destination process.
• AdressedByKey: It is a message forwarded to the appropriate process

using the DHT look-up based on the given identifier in the P2P network.
– source: It maintains the address of the sending process.
– messageInformation: It consists of the message type and some parameters

that represents the content of the message.



6 EECS, University of Ottawa, Ottawa, Ontario, Canada

Message types: We classify the message type with respect to the messageInformation
included in each message:

– Sent from a crawler to a coordinator:
• StateInfo(State currentState): This is to inform the coordinator

about the current state of the crawler. The message is addressed by
key using the ID of the crawler’s current state, allowing the coordinator
for finding an event to execute.

• AckJob(Transition executedTransition): Upon receiving an acknowl-
edgment, the coordinator updates the list of unexecuted events by setting
the status of the newly executed event to executed. The destination state
of this transition is updated accordingly.

• RequestJob(State currentState): RequestJob is a message sent by
an idle crawler looking for a job after having received an ExecuteEvent
message without an event to be executed. This message is forwarded
around the ring until a receiving coordinator finds an unexecuted event,
or the same message is received back by the coordinator that is associated
with this crawler, leading to entering the termination phase [11].

– Sent from a coordinator to a crawler:
• Start((URL): Initially, each crawler establishes a session with its asso-

ciated coordinator. The coordinator sends a Start message in response
to the crawler to start crawling the RIA.

• ExecuteEvent((initial URL, Sequence < Transition >) path):
This is an instruction to a crawler to execute a given event. The message
includes the execution path, i.e. the ordered transitions to be executed
by the crawler, where the last transition in the list contains the event
to be executed. Furthermore, the message may contain a URL, which
is used to tell the crawler that a reset is required before processing the
executionPath. The following four cases are considered:
∗ Both the URL and the path are NULL: There is no event to execute

in the scope of the coordinator.
∗ The URL is NULL but the path consists of one single transition:

There is an event to execute from the current state of the crawler.
∗ The URL is NULL but the path consists of a sequence of transitions:

It is a path from the crawler’s current state to a new event to be
executed.

∗ The URL is not NULL and the path consists of a sequence of tran-
sitions: A reset path from the initial state leading to an event to be
executed.

The P2P RIA crawl protocol: Initially, each crawler receives a Start mes-
sage from the coordinator it is associated with, which contains the seed URL.
Upon receiving the message, the crawler loads the URL and reaches the initial
state. The crawler then sends a StateInfo message using the ID of its current
state as a key, requesting the receiving coordinator to find a new event to be
executed from this state. The coordinator returns in response an ExecuteEvent



A Scalable P2P RIA Crawling System with Partial Knowledge 7

Fig. 2: Exchanged messages during the exploration phase.

message with an event to be executed or without any event. If the ExecuteEvent
message contains a new event to be executed, the crawler executes it and sends
an acknowledgment for the executed transition. It has reached a new state and
sends a new StateInfo message to the coordinator which is associated with the
ID of the new current state as a key. In case a crawler receives an ExecuteEvent
message without an event to execute, it sends a RequestJob message to the
coordinator it is associated with. This message is forwarded in the ring until a
receiving coordinator finds a job or until the system enters a termination phase.

The following section defines the P2P RIA crawl protocol as executed by the
coordinator and the crawler processes.

Coordinator process: Upon Receiving StateInfo
(stateID, crawlerAddress, currentState)
1: if stateID /∈ myDiscoveredStates then
2: add currentState to myDiscoveredStates
3: end if
4: if ∃ t ∈ currentState.transitions such thatt.status = unexecuted then
5: executionPath← t
6: t.status← assigned
7: URL← ∅
8: else if ∃ s ∈ myDiscoveredStates and t′ ∈ s.transitions such that

t′.status = unexecuted then
9: executionPath← s.path + t′

10: t′.status← assigned
11: end if
12: path←< URL, executionPath >
13: send ExecuteEvent(crawlerAddress,myAddress, path)

Coordinator process: Upon Receiving AckJob
(coordinatorAddress, crawlerAddress, executedTransition)
1: Get t from myDiscoveredStates.transitions such that

t.eventID = executedTransition.eventID
2: t.status← executed



8 EECS, University of Ottawa, Ottawa, Ontario, Canada

Coordinator process: Upon Receiving RequestJob
(coordinatorAddress, crawlerAddress, currentState)
1: if ∃ s ∈ myDiscoveredStates and t ∈ s.transitions such that

t.status = unexecuted then
2: executionPath← s.path + t
3: t.status← assigned
4: path←< URL, executionPath >
5: send ExecuteEvent(crawlerAddress,myAddress, path)
6: else
7: forward RequestJob to nextCoordinator
8: end if

Crawler process: Upon Receiving Start
(URL)
1: currentState← load(URL)
2: currentState.path← ∅
3: for all e ∈ currentState.transitions do
4: e.status← unexecuted
5: end for
6: send StateInfo(stateID,myAddress, currentState)

Crawler process: Upon Receiving ExecuteEvent
(crawlerAddress, coordinatorAddress, executionPath)
1: if executionPath 6= ∅ then
2: if URL 6= ∅ then
3: currentState← load(URL)
4: currentState.path← ∅
5: end if
6: while executionPath.hasNext do
7: currentState← process(executionPath.next)
8: end while
9: send AckJob(coordinatorAddress,myAddress, executionPath.last)

10: currentState.path← executionPath
11: for all e ∈ currentState.transitions do
12: e.status← unexecuted
13: end for
14: send StateInfo(stateID,myAddress, currentState)
15: else
16: send RequestJob(nextCoordinator,myAddress, currentState)
17: end if

4 Choosing the next event to explore from a different
state

If no event can be executed from the current state of a given crawler, the co-
ordinator that is maintaining this state may look for another state with some
unexecuted events, depending on its available knowledge about the executed
transitions. In a non-distributed environment, the crawler may have access to all
the executed transitions, which allows for the use of a shortest path algorithm
to find the closest state with unexecuted events, starting from the current state.
However, in the distributed environment, sharing the knowledge about executed



A Scalable P2P RIA Crawling System with Partial Knowledge 9

transitions may introduce a message overhead and increase the load on the co-
ordinators. Therefore, there is a trade-off between the shared knowledge which
improves the choice of the next event to execute, and the message overhead in
the system. We introduce different approaches with the aim to reduce the overall
time required to crawl RIAs.

Global-Knowledge: This is a theoretical model used for comparison pur-
pose in which we assume that all coordinators have instant access to a globally
shared information about the state of knowledge at each coordinator.

Reset-Only: A crawler can only move from a state to another by performing
a Reset. In this case, the coordinator returns an execution path, starting from the
initial state, allowing the visiting crawler to load the seed URL and to traverse
a reset path before reaching a target state with an unexecuted event. Note that
Reset-Only approach is a simple way for concurrently crawling RIAs.

Shortest path based on local knowledge: In this case, a visited coordi-
nator may use its local transitions knowledge to find the shortest path from the
crawler’s current state leading to the closest state with an unexecuted event the
coordinator is responsible for. Unlike the Reset-Only approach where only one
path from a URL to the target state is stored, coordinators store all executed
transitions with their destination states and obtain then a partial knowledge of
the application graph. This local knowledge is used to find the shortest path from
the current state of the crawler to a state with an unexecuted event. Since the
knowledge is partial, this may often lead to a reset path even though according
to global knowledge, there exists a shorter direct path to the same state.

Shortest path based on shared knowledge: In this case, the transitions
of the StateInfo message are locally stored by intermediate coordinators when
the message is forwarded through the DHT. Therefore, all forwarding coordina-
tors in the chordal ring, i.e. intermediate coordinators receiving a message that
is not designated to them, may also update their transitions knowledge before
forwarding it to the next coordinator. This way, the transitions knowledge is
significantly increased among coordinators with no message overhead.

Forward exploration: One drawback of the shortest path approach is the
distribution of states among coordinators, i.e. each state is associated with a
single coordinator in the network. Consequently, shortest paths can be only
computed to states the visited coordinator is responsible for. An alternative
consists of globally finding the optimal choice based on the breadth-first search.

The forward exploration search is initiated by the coordinator and begins by
inspecting all neighboring states from the current state of the crawler if there are
no available events on its current state. For each of the neighbor states in turn, it
inspects their neighbor states which were unvisited by communicating with their
corresponding coordinators, and so on. The coordinator maintains two sets of
states for each forward exploration query: The first, referred to as statesToV isit
is used to tell a receiving coordinator what are the states to visit next, while
the second set, referred to as visitedStates is used to prevent loops, i.e. states
that have been already explored by the forward exploration. Additionally, each
state to visit has a history path of ordered transitions from the root state to



10 EECS, University of Ottawa, Ottawa, Ontario, Canada

itself, called intermediatePath. This path is used to tell a visiting crawler how
to reach a particular state with an unexecuted event from its current state.

Initially, when a visited coordinator receives a StateInfo message from a
crawler, it will pick an unexecuted event from the crawler’s current state. If
no unexecuted event is found, the coordinator picks all destination states of
the transitions on that state and adds them to the set statesToV isit. The
intermediatePath from the crawler’s current state to each of these state is
updated by adding the corresponding transition to this path. This coordina-
tor then picks the first state in the list. It first adds it to the set visitedStates
to avoid loops, and then sends a forward exploration message containing both
statesToV isit, and visitedStates to its appropriate coordinator. When a coor-
dinator receives the forward exploration message, it checks if there is an unexe-
cuted event from the current state. If not, it adds the destination states of the
transitions on that state at the beginning of the list statesToV isit after veri-
fying that these destination states are not in the set visitedStates and that all
transitions have been acknowledged on this state. It will then pick the last state
in the list statesToV isit and send again a forward exploration message which
will be received by the coordinator that is responsible for that state.

In order to prevent different coordinators from visiting states that have
already been visited and has no unexecuted events, coordinators may share
during the forward exploration their knowledge about all executed transitions
on these states, with other coordinators in the network. This allows for pre-
venting the states with no unexecuted event that have been already explored,
from getting visited again. The knowledge sharing of executed transitions is
made by means of the messageknowledge parameter included in each of the
breadth-first search queries. The messageknowledge is updated with the variable
transitionsKnowledge that is maintained by each coordinator upon receiving
a ForwardExploration message. Notice that all executed transitions must be ac-
knowledged on each visited state before they are added to the transitionsKnowledge
variable, i.e. for each reached state, a coordinator can only jump over a visited
state if and only if all transitions have been executed on that state and are known
to a given coordinator.

The following figure describes the forward Exploration protocol, as exe-
cuted by the coordinator process upon receiving a ForwardExploration mes-
sage. The line 4 to line 13 of UponReceivingStateInfomessage are replaced by
UponReceivingForwardExplorationmessage, allowing for initiating the For-
ward Exploration.

5 Evaluation

5.1 Simulation:

The simulation software that we developed is written in the Java programming
language using the Kepler Service Release 1 of the Eclipse software development
environment. For the purpose of simulation, we used the Java SSIM simulation
package [15].



A Scalable P2P RIA Crawling System with Partial Knowledge 11

Coordinator process: Upon Receiving ForwardExploration
(coordinatorAddress, crawlerAddress, currentState,
statesToV isit, visitedStates,messageKnowledge)
1: transitionsKnowledge← messageKnowledge + transitionsKnowledge
2: if ∃ t ∈ currentState.transitions such that t.status = unexecuted then
3: executionPath← currentState.intermediatePath + t
4: t.status← assigned
5: URL← ∅
6: path←< URL, executionPath >
7: send ExecuteEvent(crawlerAddress,myAddress, path)
8: else
9: if @ t ∈ currentState.transitions such that t.status = assigned then

10: for all t ∈ currentState.transitions do
11: transitionsKnowledge← t + transitionsKnowledge
12: end for
13: end if
14: for all t ∈ currentState.transitions such that t.status = executed do
15: if t.destinationState /∈ visitedStates then
16: t.destinationState.intermediatePath← currentState.intermediatePath + t
17: statesToV isit← t.destinationState + statesToV isit
18: end if
19: end for
20: noJumping ← false
21: while statesToV isit 6= ∅ or noJumping = false do
22: nextState← statesToV isit.last
23: remove statesToV isit.last
24: push nextState to visitedStates
25: if nextState.transitionsKnowledge 6= ∅ then
26: for all t ∈ nextState.transitionsKnowledge do
27: if t.destinationState /∈ visitedStates then
28: t.destinationState.intermediatePath← nextState.intermediatePath + t
29: statesToV isit← t.destinationState + statesToV isit
30: end if
31: end for
32: else
33: noJumping ← True
34: send ForwardExploration(nextState.coordinatorAddress, crawlerAddress, nextState,

statesToV isit, visitedStates, transitionsKnowledge)
35: end if
36: end while
37: if statesToV isit = ∅ and noJumping = false then
38: send ExecuteEvent(crawlerAddress,myAddress, ∅)
39: end if
40: end if

5.2 Test-Applications:

The first real large-scale application we consider is the JQuery-based AJAX
file browser 1 RIA, which is an AJAX-based file explorer. It has 4622 states
and 429654 transitions with a reset cost of 12. The second and largest tested
real large-scale application is the Bebop 2 RIA. It consists of 5082 states and
468971 transitions with a reset cost of 3. Notice that in an effort to minimize
any influence that may be caused by considering events in a specific order, the
events at each state are randomly ordered for each crawl.

1 http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/ (Local version:
http://ssrg.eecs.uottawa.ca/seyed/filebrowser/)

2 http://www.alari.ch/people/derino/apps/bebop/index.php/ (Local version:
http://ssrg.eecs.uottawa.ca/bebop/)



12 EECS, University of Ottawa, Ottawa, Ontario, Canada

5.3 Results and Discussion:

This section presents the simulation results of crawling the test-applications us-
ing our simulation software. Based on our preliminary analysis of experimental
results, a coordinator can support up to 20 crawlers without becoming over-
loaded. For each of the test-applications, we plot the simulated time (in seconds)
for an increasing number of coordinators from 1 to 20, with steps of 5, while the
number of crawlers is constant and set to 20 crawlers. In this simulation, we
plot the cost in time required for crawling each of the test-applications and we
compare the efficiency of the proposed schemes to the Global Knowledge scheme
where all coordinators have instant access to a globally shared information about
the state of knowledge at all coordinators. Notice that the Global Knowledge
scheme is unrealistic in our setting and is used only for comparison.

The worst performance is obtained with the Reset-Only strategy, followed
by the Shortest Path with Local Knowledge strategy. This is due to the high
number of resets performed as well as the partial knowledge compared to all other
strategies. Our simulation results also show that the Shortest Path with Local
Knowledge strategy converges towards the Reset-Only strategy as the number
of coordinators increases, which is due to the low partial knowledge available on
each coordinator when the number of coordinators is high.

The Shortest Path based on shared Knowledge strategy comes in the second
position and significantly outperforms both the Reset-Only and the Shortest
Path based on Local Knowledge strategies as coordinators have more knowledge
about the application graph. However, it is worst than the Forward Exploration
strategy due to its partial knowledge.

For all applications, the best performance is obtained with the Forward Ex-
ploration strategy. This strategy has performed significantly better than the
Reset-Only and the Shortest Path based on Local Knowledge strategies and
it slightly outperformed the Shortest Path based on shared Knowledge strat-
egy. This is due to the fact that shortest paths can be only computed toward
states the visited coordinator is responsible for, while the Forward Exploration
strategy consists of finding globally the optimal choice based on the distributed
breadth-first search.

We conclude that the Reset-Only, the Shortest Path based on Local Knowl-
edge and the Shortest Path based on shared Knowledge strategies are bad strate-
gies, while the Forward Exploration is the best choice for RIA crawling in a
decentralized P2P environment.

Our simulation results show that the simulated time for all schemes increases
as the number of coordinators increases, which explains the difficulty of decen-
tralizing the crawling system.

5.4 Scalability of our approach:

The following section illustrates the expected performance when we have 20
crawlers per coordinator, assuming that a coordinator can support up to 20
crawlers without becoming a bottleneck. The behavior of the crawling system



A Scalable P2P RIA Crawling System with Partial Knowledge 13

Fig. 3: Comparing different sharing schemes for crawling the JQuery file tree RIA.

Fig. 4: Comparing different sharing schemes for crawling the Bebop RIA.

is similar across our test-applications. Therefore, we demonstrate the system
scalability using the largest test-application we have, which is the Bebop RIA.

We consider the strategy with the best performance, which is the Forward
Exploration strategy and we plot the simulated time (in seconds) for an increas-
ing number of coordinators from 1 to 5, with 20 crawlers for each coordinator.
Our simulation results show that the crawling time decreases near optimally
as we increase the number of crawlers, which is consistent with our expecta-
tions. We conclude that our system scales with the number of crawlers when the
coordinators are not overloaded.



14 EECS, University of Ottawa, Ottawa, Ontario, Canada

Fig. 5: System scalability for crawling the Bebop RIA.

6 Conclusion

We have presented a new distributed decentralized scheme for crawling large-
scale RIAs by partitioning the search space among several controllers that share
the information about the explored RIA. This allows for fault tolerance and
scalability. Simulation results show that the Forward Exploration strategy is
near optimal and outperforms the Reset-Only, the Shortest Path based on Lo-
cal Knowledge and the Shortest Path based on Shared Knowledge strategies.
This is due to its ability to globally find a shortest path, compared to all other
strategies that are based on partial knowledge. This makes Forward Exploration
a good choice for general purpose crawling in a decentralized P2P environment.
However, there is still some room for improvement: We plan to study the sys-
tem behavior when controllers become bottlenecks. We also plan to apply other
crawling strategies besides the greedy strategy.

Acknowledgments. This work is supported in part by IBM and the Natural
Science and Engineering Research Council of Canada.
Disclaimer. The views expressed in this article are the sole responsibility of the
authors and do not necessarily reflect those of IBM.
Trademarks. IBM, Rational and AppScan are trademarks or registered trade-
marks of International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on the Web at
Copyright and trademark information at www.ibm.com/legal/copytrade.shtml.

References

1. Mirtaheri, S.M., Zou, D., Von Bochmann, G., Jourdan, G.V., Onut, I.V. : Dist-RIA
Crawler: A Distributed Crawler for Rich Internet Applications. In: Proceedings
of the 8TH International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC 2013), France, Compiegne (2013)



A Scalable P2P RIA Crawling System with Partial Knowledge 15

2. Zhang, X., Wang, H.: AJAX Crawling Scheme Based on Document Object Model.
In: Fourth International Conference on Computational and Information Sciences
(ICCIS), pp. 1198–1201, China, Chongqing (2012)

3. Choudhary, S., Dincturk, M.E., Mirtaheri, S.M., Moosavi, A., Von Bochmann, G.,
Jourdan, G.V., Onut, I.V.: Crawling Rich Internet Applications: The State of the
Art. In: Conference of the Center for Advanced Studies on Collaborative Research,
pp. 146–160, Toronto, Markham (2012)

4. Benjamin, K., Von Bochmann, G., Dincturk, M.E., Jourdan, G.V., Onut, I.V.:Some
Modeling Challenges when Testing Rich Internet Applications for Security. In: First
International workshop on modeling and detection of vulnerabilities, France, Paris
(2010)

5. Xiao, X., Zhang W.Z., Zhang, H.L., Fang B.X.: A Forwarding-Based Task Schedul-
ing Algorithm for Distributed Web Crawling over DHTs. In: Proceedings of the
15th International Conference on Parallel and Distributed Systems (ICPADS), pp.
854–859, China, Shenzhen (2009)

6. Paulson, L.D.: Building rich web applications with Ajax. In: Computer publication
of the IEEE Computer Society, vol. 38, pp. 14–17, (2005)

7. Cho, J., Garcia-Molina, H.: Parallel crawlers. In: Proceedings of the 11th interna-
tional conference on World Wide Web, WWW, vol. 2, Hawaii, Honolulu (2002)

8. Schollmeier, R.: A Definition of Peer-to-Peer Networking for the Classification of
Peer-to-Peer Architectures and Applications. In: Proceedings of the IEEE 2001 In-
ternational Conference on Peer-to-Peer Computing (P2P2001), Sweden, Linkping
(2001)

9. Stoica, I., Morris, R., Karger, D., Frans Kaashoek, M., Balakrishnan, H.: Chord: A
Scalable Peer-to-Peer Lookup Service for Internet Applications. In: Proceedings of
ACM SIGCOMM 2001, California, San Deigo (2001)

10. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
In: Proceedings of the 7th international conference on World Wide Web, WWW,
vol. 7, Australia, Brisbane (1998)

11. Misra, J.: Detecting termination of distributed computations using markers. In:
PODC’83, Proceedings of the second annual ACM symposium on Principles of dis-
tributed computing, vol. 22, pp. 290–294, NY, New York (1983)

12. Marini, J.: Document object model: processing structured documents. McGraw-
Hill/Osborne, (2002)

13. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, pp. 269-271, (1959)

14. Loo, B.T., Owen, L., Krishnamurthy, C.S.: Distributed web crawling over DHTs.
Technical Report, (2004)

15. Carzanig, A., Rutheford, M.: SSim, a simple Discrete-event Simulation
Library, University of Colorado,Antonio.Carzaniga, Matt.Rutherford@usi.ch,
http://www.inf.usi.ch/carzaniga/ssim/index.html, 2003.


