
GDist-RIA Crawler: A Greedy Distributed
Crawler for Rich Internet Applications

Seyed M. Mirtaheri, Gregor V. Bochmann, Guy-Vincent Jourdan1, and Iosif
Viorel Onut2

1 School of Electrical Engineering and Computer Science, University of Ottawa,
Ottawa, Ontario, Canada

staheri@uottawa.ca, gvj@eecs.uottawa.ca, bochmann@eecs.uottawa.ca
2 Security AppScanR© Enterprise, IBM

770 Palladium Dr, Ottawa, Ontario, Canada
vioonut@ca.ibm.com

Abstract. Crawling web applications is important for indexing, acces-
sibility and security assessment. Crawling traditional web applications is
an old problem, for which good and efficient solution are known. Crawl-
ing Rich Internet Applications (RIA) quickly and efficiently, however,
is an open problem. Technologies such as AJAX and partial Document
Object Model (DOM) updates only make the problem of crawling RIA
more time consuming to the web crawler. One way to reduce the time to
crawl a RIA is to crawl a RIA in parallel with multiple computers. Pre-
viously published Dist-RIA Crawler presents a distributed breath-first
search algorithm to crawl RIAs. This paper expands Dist-RIA Crawler in
two ways. First, it introduces an adaptive load-balancing algorithm that
enables the crawler to learn about the speed of the nodes and adapt to
changes, thus better utilize the resources. Second, it present a distributed
greedy algorithm to crawl a RIA in parallel, called GDist-RIA Crawler.
The GDist-RIA Crawler uses a server-client architecture where the server
dispatched crawling jobs to the crawling clients. This paper illustrates a
prototype implementation of the GDist-RIA Crawler, explains some of
the techniques used to implement the prototype and inspects empirical
performance measurements.

Keywords: Web Crawling, Rich Internet Application, Greedy Algo-
rithm, Load-Balancing

1 Introduction

Crawling is the process of exploring and discovering states of a web application
automatically. This problem has a long and interesting history. Throughout the
history of web-crawling, the chief focus of web-crawlers has been on crawling
traditional web applications. In these applications there is a one to one cor-
respondance between the state of the web application and its URL. The new
generation of web applications, called Rich Internet Applications (RIAs), take
advantage of availability of powerful client-side web-browsers and shift some part



of application logic to the client. This shift often breaks the assumption of one-
to-one correspondance between the URL and the state of the application. Thus,
unlike a traditional web application, in crawling a RIA it is not sufficient to
discover all application URLs, and it involves discovering all application states.

In a RIA, a client-side page, associated with a single URL, often contains
executable code that may change the state of the page as seen by the user. This
state is stored within the browser, and is called the Document Object Model
(DOM). Its structure is encoded in HTML and includes the program fragments
executed in response to user input. Code execution is normally triggered by
events invoked by the user, such as mouse over or clicking events. To ensure
that a crawler finds all application content it must execute every events from
every reachable application states. Thus, under the assumption that a RIA is
deterministic, the problem of crawling is reduced to the problem of executing all
events in the application across all reachable DOMs.

One can reduce the time it takes to crawl a RIA by executing the crawl
in parallel on multiple computational units. By considering each state of the
application on the client side (henceforth simply referred to as state) as a vertex
and each JavaScript event as an edge, the problem of the parallel crawling a RIA
is mapped to the problem of parallel exploration of a directed graph.

Dist-RIA Crawler [28] introduced a distributed crawler for RIAs that achieves
parallelism by having all the crawlers go to each application state, however, each
crawler only explores a specific subset of the events in that vertex. The union of
all these events covers all of the events in the state. In Dist-RIA Crawler, each
crawler node implements a breath-first search algorithm in its own scope.

Dist-RIA Crawler assigns equal number of events to each node. The under-
lying assumption is that all nodes have equal processing power, and thus equal
workload is to be assigned to the nodes. To enhance Dist-RIA Crawler to take
advantage of heterogeneous set of nodes available, this paper introduces a mech-
anism to adapt to the perceived speed and processing power of the nodes. This
algorithm is explained in Section 3.

In the context of RIA crawling, crawling strategy refers to the strategy the
crawler follows to decide the next event to execute. Dincturk et al. [5, 13, 15]
studied several crawling strategies to optimize the crawl in two dimensions: re-
ducing the total time of the crawl, and finding new application states as soon as
possible in the crawl. Among the strategies studied, the greedy algorithm [29]
scores well in the majority of cases, and it is much better than breath-first and
depth-first search strategies. This algorithm always chooses the closest applica-
tion state with an un-executed event, goes to the state and execute the event.
This paper studies distribution of the greedy algorithm.

In Dist-RIA Crawler, the nodes only broadcast the knowledge of application
states, and no single node had the entire knowledge of the transitions between
the states. This restriction does not allow a Dist-RIA Crawler to run the greedy
algorithm: knowledge of application transitions is a prerequisite for the greedy
algorithm. At the same time, broadcasting all transitions to the entire group of
workers can make the network a bottleneck.



This paper introduces GDist-RIA Crawler, a client-server architecture to in-
tegrate the greedy algorithm into the architecture of the Dist-RIA Crawler. The
GDist-RIA Crawler runs the greedy algorithm on the server and runs the crawl-
ing jobs to the client nodes. The server node is henceforth referred to as the
coordinator and the client nodes responsible to crawl the website are henceforth
referred to as the nodes. Nodes ask the coordinator for tasks to do, the coor-
dinator runs the greedy algorithm on the application graph and responds them
with a set of events to execute. Nodes execute the assigned tasks and inform the
coordinator about the transition they discovered. The coordinator is the only
computer that keeps the knowledge of application graph.

The greedy nature of the algorithm makes the GDist-RIA Crawler superior
to the Dist-RIA Crawler (which runs breath-first search) by reducing the total
number of events executed to crawl an application. The GDist-RIA Crawler is
also superior to the centralized greedy algorithm in that it harnesses the power
of multiple nodes to reduce the time it takes to crawl the target application.
Further, it does not require the load-balancing algorithm introduced in Section
3 that is required by the breath-first search strategy, since only idle nodes ask
for work from the coordinator, and thus no node becomes a bottleneck.

This paper contributes to the body of crawling literature by enhancing the
previously presented Dist-RIA Crawler in two ways. First by introducing an
adaptive load-balancing strategy to harness availability of heterogenous nodes.
Second by introducing a client-server architecture to concurrently crawl RIAs.
We share our empirical experience with the introduced model and some of the
challenges we faced in capturing client-side events.

The rest of this paper is organized as follows: In Section 3 we introduce a
new adaptive load-balancing algorithm. In Section 4 we give an overview of the
GDist-RIA Crawler. In Section 5 we describe some of the technical aspects of
implementing the GDist-RIA crawler. In Section 6 we evaluate various perfor-
mance aspects of the GDist-RIA Crawler. In Section 2 we give an overview of
the related works. Finally, in Section 7 we conclude this paper.

2 Related Works

This work is not the first of its kind in addressing the issue of RIA model
construction and model checking. Duda et al. [16, 19, 24] uses Breadth-First
search crawling strategy to crawl RIAs. Crawljax [25, 26] leans toward Depth-
First search strategy. Other works aim at constructing the FSM model of the
application [1–3,23].

Model-based crawling is another area of research that gained momentum in
recent years. Benjamin et al. [6,14] present they hypercube model that assumes
the target application is a hypercube. Choudhary et al. [10,11] introduce Menu
model that assumes events reach the same target state, irrelevant of the source
state. Greedy strategy was explored by Peng et al. [29]; and Milani Fard and
Mesbah [27] in a tool called FeedEx. An empirical comparison of different crawl-
ing strategies is done by Dincturk et al [13,14].



Parallel crawling of traditional web applications has been explored exten-
sively in the literature [7–9,17,18,20,21,30,31]. Parallel crawling of RIAs however
is a new field and the only work we know of is Dist-RIA Crawler [28]. Dist-RIA
Crawler performs a breath-first search over multiple independent nodes. This
paper adds a load-balancing algorithm to the breath-first search. It also works
on the superior and more efficient greedy algorithm.

A close topic to Model-based crawling is DOM equivalency. Duda et al. [16,
19, 24] used equality of DOMs to measure their equivalency. Crawljax [25, 26]
uses edit distance to do so. Amalfitano et al. [2] compares the two DOMs based
on the elements in them. Imagen [22] takes into account JavaScript functions
closure, event listeners and HTML5 elements as well in identifying the state of
the application. In this paper an DOM equality, the most strict form of DOM
equivalency, is used.

3 Load-Balancing

The following notations are used in this section and the rest of the paper:

– s: Refers to an application state.
– e: Refers to an event.
– S: The total number of application states.
– Es: The number of events in the application state s.
– E: Sum of the number of events in all application states.
– N : Number of crawler nodes.
– i: A unique identification number of a node, where 1 ≤ i ≤ N .

As described earlier, in each state, Dist-RIA Crawler assigns equal shares
of work to the nodes. The load-balancing algorithm presented in this section,
refered to as adaptive approach, adjusts the portion of events assigned to each
node as the crawling proceeds. The manipulation of the portion assigned to the
nodes is used as a tool to reduce the workload of the overloaded nodes, and
increase the workload of the idle nodes. One of the nodes, called coordinator,
calculates the portion of the events to be assigned to each node at the time
of state discovery. Tasks are not assigned equally, but assigned based on the
perceived computational speed of the node and its current workload.

The purpose of the assignment is to drive all nodes to finish together. The
portion of events in state s that belong to node i is represented by Ps,i where
Ps,i ∈ [0, 1]. The coordinator uses the assignment of tasks to different nodes
as a means to increase the chance of all nodes to finish together, and no node
becomes a bottleneck. To achieve this goal, for every node i, the coordinator
uses the number of events executed so far by the node (called ETi) to calculate
the execution speed of the node. This execution speed is used to forecast the
execution rate of the node in the future. Based on the calculated speed for all
nodes, and the given remaining workload of each node, the coordinator decides
the portion of the tasks that are assigned to each node.



3.1 Adaptive Load-Balancing Algorithm

Assume that a new state s is discovered at time t. The coordinator calculates
vi, the speed of node i, as:

vi = ETi/t (1)

where ETi is the number of events executed by node i so far. The remaining
workload of node i can be calculated as the difference between the number of
assigned events (called ATi) and the number of executed events ETi. Based on
the calculated speed vi, the coordinator calculates the time it takes for node i
to finish execution of remaining events assigned to it. This time to completion
is represented by TCi and is calculated as follow:

TCi =
ATi − ETi

vi
(2)

After the coordinator distributes the new events of a newly discovered state s
among the nodes, the time to complete all events will change. Assuming node
i will continue executing events at rate vi, the new estimation for the time to
finish, called TC ′i, is:

TC ′i = TCi +
Ps,i × Es

vi
(3)

To drive all nodes to finish together, the coordinator seeks to make TC ′ equal
for all nodes. That is, it seeks to make the following equation valid:

TC ′1 = TC ′2 = · · · = TC ′N (4)

Equations 4 can be re-written using equation 3:

TC1 +
Ps,1 × Es

v1
= TC2 +

Ps,2 × Es

v2
= · · · = TCN +

Ps,N × Es

vN
(5)

Let us take the first two expressions and re-write then:

TC1 +
Ps,1 × Es

v1
= TC2 +

Ps,2 × Es

v2
(6a)

⇒
(TC1 +

Ps,1×Es

v1
− TC2)× v2

Es
= Ps,2 (6b)

Similarly Ps,2, Ps,3, . . . and Ps,N can all be expressed as follow:

∀i : 2 ≤ i ≤ N : Ps,i =
(TC1 +

(Ps,1×Es)
v1

− TCi)× vi

Es
(7)

The coordinator intends to assign all of the events in the newly discovered states
to the nodes. Thus the sum of all P s for state s is 1. Therefore:

1 =

N∑
i=1

Ps,i (8)



By expanding Ps,2, Ps,3, . . . and Ps,N in equation 8, using equation 7, we get:

1 = Ps,1 +

N∑
i=2

(TC1 +
(Ps,1×Es)

v1
− TCi)× vi

Es
(9a)

⇒ Ps,1 =

1−
N∑
i=2

(TC1 − TCi)× vi
Es

1 + Es

v1×Es
×

N∑
i=2

vi

(9b)

Given the value of Ps,1 using equation 9, the value of Ps,2, Ps,3, . . . and Ps,N

can easily be calculated using equation 7.
The adaptive approach does not guarantee that all nodes finish together. The

assignment eliminates bottlenecks only if there are enough events in a newly
discovered state s to rescue every bottlenecked node. In the other words, if there
are not enough events in s, and the workload gap between the nodes is large, the
adaptive approach fails to assign enough jobs to all idle nodes and make them
busy so that all nodes finish together.

4 Overview of the GDist-RIA Crawler

This section describes the crawling algorithm that the GDist-RIA crawler uses.

4.1 Design Assumptions

The GDist-RIA Crawler makes the following assumptions:

– Reliability: Reliability of nodes and communication channels is assumed.
It is also assumed that each node has a reachable IP address.

– Network Bandwidth: It is assumed that the crawling nodes and the co-
ordinator can communicate at a high speed. This makes the network delay
intangible. Note that there is no assumption made about the network delay
between the server or servers hosting the target application and the crawling
nodes.

– Target RIA: The GDist-RIA Crawler only targets deterministic finite RIAs.
More formally, the GDist-RIA Crawler assumes that visiting a URL always
leads to the same state; and from a given state, execution of a specific
JavaScript event always leads to the same target state.

4.2 Algorithm

The GDist-RIA Crawler consists of multiple nodes. The nodes do not share
memory and work independently of each other. Nodes communicate with the
coordinator using a client-server architecture. Nodes start by contacting the



coordinator for the seed URL. After loading the seed URL (i.e. the URL to
reach the starting state of the RIA), and after executing any path of events, a
node sends the hash of the serialized DOM (henceforth referred to as the ID of
s), as well as Es to the coordinator.

In response, the coordinator who has the knowledge of the application graph
calculates the closest application state to s with an unexecuted event and sends
a chain of events that lead to that state back to the probing node. This path may
start with a reset order by visiting the seed URL. In addition, the coordinator
sends the index of the un-executed event in the target state to the probing node.

The probing node executes the assigned event and sends the transition to
the coordinator. The coordinator again runs the greedy search algorithm and
responds to the client with a new chain of events. This process continues until
all the events in all the application states are executed. If at any point the
coordinator realizes that there is no path from the state of the probing node to
a state with unexecuted events, it orders the node to reset. In effect, by reseting
the node jumps back to the seed URL. Since all application states are reachable
from the seed URL, the node will find events to execute after the reset.

Init.start

Active Idle Term.
L

o
a
d

S
eed

U
R

L

Work Arrives

R
esta

rt
No Unassigned Work

Stay Idle order arrives

R
es

ta
rt

Work Arrives

Terminate order arrives

Fig. 1: The Node Status state diagram.

Figure 1 shows the node state diagram of a crawler node. The crawler starts in
the Initial state. In this state, the crawler starts up a headless browser process.
It then loads the seed URL in the headless browser and goes into the Active
state. Crawling work happens in the Active state. After finishing the assigned
task, the node goes to the Idle state. The node stays in the Idle state until either
more work becomes available or a termination order from the coordinator marks
the end of the crawl. During Active and Idle states, the coordinator may order



the node to restart so it can reach states that are unreachable from the current
state of the node.

4.3 Termination

When the following two conditions are met the coordinator initiates the termi-
nation protocol by sending all nodes a Terminate order:

– All nodes are all in Idle state.
– There is no Unassigned work in the coordinator i.e. all events in the discov-

ered states are assigned to the nodes.

5 Implementation

To ensure that the proposed algorithm is practical a prototype of the system
was implemented. This section explains some of the technical challenges in im-
plementing the prototype of the GDist-RIA crawler.

5.1 Running a Virtual Headless Browser

The GDist-RIA Crawler uses an engine, called JS-Engine, to handle web client
events3. The primary task of JS-Engine is to execute JavaScript events and it
uses PhantomJS 4, an open source headless WebKit, to emulate a browser with
the capability to do so.

Due to the asynchronous nature of the JavaScript, the crawler can not simply
trigger an event and consider the execution finished when the call returns. Exe-
cuting an event in JavaScript may trigger an asynchronous call to the server, or
schedule an event to happen in the future. When these events happen the state
of the application may change. More formally, two main types of the events that
may have dormant ramifications include: Asynchronous calls and Clock events.

Upon triggering an event on the target application, the JS-Engine waits
until the event and all its ramifications are over. For this to happen success-
fully, the JS-Engine requires a mechanism to keep track of all asynchronous
calls in progress and wait for their completion before continuing. Unfortunately,
JavaScript does not offer a method to keep track of AJAX calls in progress.
Thus the JS-Engine redefines send and onreadystatechange methods of XML-
HttpRequest object, the native JavaScript object responsible for performing asyn-
chronous requests, such that the target web application notifies the crawler ap-
plication automatically upon start and finish of every asynchronous call (Listing
1.1)56.

3This paper only focuses on JavaScript events and leaves other client side events
such as Flash events to the future studies.

4http://phantomjs.org/
5XMLHttpRequest is the module responsible for asynchronous calls in many popular

browsers such as Firefox and Chrome. Microsoft Internet Explorer however does not
use module, and instead it uses ActiveXObject.

6Due to space limitation rest of code snippets in this section are omitted.

http://phantomjs.org/


Listing 1.1: Hijacking Asynchronous Calls

XMLHttpRequest.prototype.sendOriginal = XMLHttpRequest.prototype.send;

XMLHttpRequest.prototype.send = function (x){

var onreadystatechangeOriginal = this.onreadystatechange;

this.onreadystatechange = function(){

onreadystatechangeOriginal(this);

parent.ajaxFinishNotification();

}

parent.ajaxStartNotification();

this.sendOrig(x);

};

The second source of asynchronous behaviour of a RIA with respect to the
time comes from executing clock functions, such as setTimeout. This methods
is used to trigger an event in the future. In many cases, such events can help
animating the website, and adding fade-in fade-out effects. Knowledge of the
existence of such dormant functions may be necessary to the JS-Engine. Similar
to the asynchronous events, JavaScript does not offer a method to keep track of
the time events. Thus JS-Engine re-defines setTimeout to hijack time events.

JS-Engine needs to identify the user interface events (i.e. the events that
can be triggered by the user interacting with the interface) in the page. Events
that leave a footprint in the DOM are easy to detect: Traversing the DOM
and inspecting each element can find these events. Attached events using addE-
ventListener, however, do not reflect themselves on the DOM. The final challenge
faced by JS-Engine is to detect these client-side events attached through event
listeners.

These events are added through a call made to addEventListener and are
removed through a call made to removeEventListener. To handle event listeners,
JS-Engine redefines addEventListener and removeEventListener methods such
that whenever a call is made to addEventListener an entry is added to a global
object, and when a call is made to removeEventListener the corresponding el-
ement is removed. Hence at any given point, JS-Engine can simply check the
contents of this object to get elements with attached events.

6 Evaluation

The coordinator prototype is implemented in PHP 5.3.10 and MySQL 14.14. The
coordinator contacts the node using SSH channel. The nodes are implemented
using PhantomJS 1.9.2, and they contact the coordinator through HTTP. The
coordinator as well as the nodes are hosted on a Linux R© Kernel 3.8.0 operating
system with an Intel R© Intel R© Core(TM)2 Duo CPU E8400 @ 3.00GHz and 3GB
of RAM. The communication happens over a 10 Gbps network.



Fig. 2: File tree browser RIA
screen-shot

0 5

1
0

1
5

0

100

200

Number of Nodes

T
im

e
(s

)

Time to Crawl

Optimal Time Base on T1

Fig. 3: The total time to Crawl the target RIA
with multiple nodes.

6.1 Testbed

To measure the performance of the crawler in practice a jQuery based RIA called
jQuery file tree7 was chosen. This open source library creates a web interface
that allows the user to brows a set of files and directories through a browser.
Similar to most file browsers, directories can be expanded and collapsed, leading
to the new client side states. Expanding a directory triggers an asynchronous
call to the server to retrieve the contents of that directory. Picture 2 shows a
picture of a jQuery file tree application.

6.2 Results

To capture the performance of the algorithm as the number of nodes increases,
we crawled the target RIA with different number of nodes, from 1 node to 15
nodes.

Figure 3 shows the total time it takes to crawl the RIA as the number of
nodes increase (the bar chart) and compares it with the theoretical optimal time
to crawl the RIA with multiple nodes (the line chart). The theoretical optimal
time it calculated by taking the time it takes to crawl the RIA with one node
(T1), and divide the number by the number of nodes used by the crawler. This
theoretical number serves as a base line to measure the efficiency of the crawler.
A the figure shows, a good speedup is achieved as the number of nodes increases.
The best performance is achieved with 14 nodes.

The performance of the crawler in Figure 3 is better described by breaking
down the time into most time consuming operations. Box plots in Figures 4, 5,
6 and 7 show this break down:

– Figure 4: This plot shows the time it takes to load the seed URL into JS-
Engine. This plot is interesting in that, this operation is the only operation

7http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/

http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/


that gets more expensive as the number of crawlers increase. Compared to
normal asynchronous calls, the seed URL contains large files and libraries.
As the number of crawling nodes increase, the host server disk operation
becomes a bottleneck and a jump is observed around node 6.

– Figure 5: This plot shows the time it takes for the coordinator to maintain
and update the application graph. This includes adding new states and tran-
sitions to the application graph stored in the MySQL database. As expected,
this operation is impacted by the number of crawlers.

– Figure 6: This plot shows the time it takes for the coordinator to calculate the
closest state from the state of the probing node with un-executed events in it.
The time to do this calculation does not vary much and it is often close to 50
milliseconds. The calculation itself is rather fast, and the majority of the 50
milliseconds is spent on retrieving the application graph from the database
and constructing the auxiliary structures in the memory. As expected, the
figure shows that the measured values are independent of the number of
crawlers and are not impacted by it.

– Figure 7: Finally this plot shows the time it takes to execute a single JavaScript
event. Based on our calculations, executing JavaScript events is fairly fast
when there is no asynchronous call to the server. Asynchronous calls make
event execution time substantially longer, and often increase the execution
time by two orders of magnitude. At the scale we ran the experiments, the
application server is not bottlenecked by executing JavaScript events. Even-
tually as the number of nodes increases, the application server will become
a bottleneck and the time it takes to execute asynchronous requests rises.

1 2 3 4 5 6 7 8 9 101112131415

1,000

2,000

3,000

4,000

Number of Nodes

T
im

e
(m

s)

Fig. 4: Time to load the seed URL into
JS-Engine.

1 2 3 4 5 6 7 8 9 101112131415

0

500

1,000

Number of Nodes

T
im

e
(m

s)

Fig. 5: Time to update application
graph.

6.3 Discussion

From the presented break down, it is obvious that the most time consuming
operation is loading the seed URL into the JS-Engine. The second most time



1 2 3 4 5 6 7 8 9 101112131415

0

100

200

Number of Nodes

T
im

e
(m

s)

Fig. 6: Time to calculate the next task
using the greedy algorithm.

1 2 3 4 5 6 7 8 9 101112131415

0

200

400

600

Number of Nodes

T
im

e
(m

s)

Fig. 7: Time to execute JavaScript
events.

consuming operation that happens frequently is executing JavaScript events.
Executing a JavaScript event can be particularly time consuming if it involves
an asynchronous call to the server.

The design decision of performing the greedy algorithm in a centralized lo-
cation is inspired by the large discrepancy in the time it takes to find the path
greedily and the time it takes to execute the path. As the experiments presented
suggests, executing a single asynchronous event can take an order of magnitude
longer than calculating the entire shortest path.

At the scale presented in this paper, the coordinator is far from being a bot-
tleneck. As the number of crawling nodes increases, however, the coordinator is
bound to become one. In Dist-RIA Crawler [28] nodes uses a deterministic algo-
rithm to autonomously partition the search space and execute JavaScript events
in the application. As a future improvement, similar techniques can be used to
improve the GDist-RIA crawler by allowing the crawling nodes to autonomously
decide (at least partly) the events to execute.

7 Conclusion and Future Improvements

This paper studies distributed crawling of RIAs using a greedy algorithm. A new
client-server architecture to dispatch crawling jobs among the crawling nodes,
called GDist-RIA Crawler, is introduced. Upon finishing a task, nodes ask the
coordinator for the next tasks to do. The coordinator runs the greedy algorithm
to assign new task to the probing node, and responds the node with the task. A
prototype of the algorithm is implemented and experimental results are provided.

The GDist-RIA Crawler achieves a satisfactory speed up while running the
system with up to 15 crawling nodes. This speedup is a result of the low cost of
running the greedy search in the application graph at the coordinator, compared
to executing the found path by a crawler node. The GDist-RIA Crawler can be
improved in many directions, including: Multiple Coordinators to scale better,
a peer-to-peer architecture is to shift the greedy algorithm from the coordinator



to the crawling nodes, parallelizing other Model-based Crawling strategies (such
as probabilistic model or menu model) [4,5,12,15], and Cloud Computing to be
more elastic with respect to the resources available and disappearing resources.

Acknowledgements

This work is largely supported by the IBM R© Center for Advanced Studies, the
IBM Ottawa Lab and the Natural Sciences and Engineering Research Council
of Canada (NSERC). A special thank to Sara Baghbanzadeh.

Trademarks

IBM, the IBM logo, ibm.com and AppScan are trademarks or registered trade-
marks of International Business Machines Corp., registered in many jurisdictions
worldwide. Other product and service names might be trademarks of IBM or
other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.
Intel, and Intel Xeon are trademarks or registered trademarks of Intel Corpo-
ration or its subsidiaries in the United States and other countries. Linux is a
registered trademark of Linus Torvalds in the United States, other countries, or
both. Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

References

1. D. Amalfitano, A. R. Fasolino, and P. Tramontana. Reverse engineering finite state
machines from rich internet applications. In Proceedings of the 2008 15th Working
Conference on Reverse Engineering, WCRE ’08, pages 69–73, Washington, DC,
USA, 2008. IEEE Computer Society.

2. D. Amalfitano, A. R. Fasolino, and P. Tramontana. Experimenting a reverse engi-
neering technique for modelling the behaviour of rich internet applications. In Soft-
ware Maintenance, 2009. ICSM 2009. IEEE International Conference on, pages
571 –574, sept. 2009.

3. D. Amalfitano, A. R. Fasolino, and P. Tramontana. Rich internet application
testing using execution trace data. In Proceedings of the 2010 Third International
Conference on Software Testing, Verification, and Validation Workshops, ICSTW
’10, pages 274–283, Washington, DC, USA, 2010. IEEE Computer Society.

4. K. Benjamin, G. v. Bochmann, G.-V. Jourdan, and I.-V. Onut. Some modeling
challenges when testing rich internet applications for security. In Proceedings of
the 2010 Third International Conference on Software Testing, Verification, and
Validation Workshops, ICSTW ’10, pages 403–409, Washington, DC, USA, 2010.
IEEE Computer Society.

5. K. Benjamin, G. von Bochmann, M. E. Dincturk, G.-V. Jourdan, and I.-V. Onut.
A strategy for efficient crawling of rich internet applications. In ICWE, pages
74–89, 2011.



6. K. Benjamin, G. Von Bochmann, M. E. Dincturk, G.-V. Jourdan, and I. V. Onut.
A strategy for efficient crawling of rich internet applications. In Proceedings of the
11th international conference on Web engineering, ICWE’11, pages 74–89, Berlin,
Heidelberg, 2011. Springer-Verlag.

7. P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: A scalable fully
distributed web crawler. Proc Australian World Wide Web Conference, 34(8):711–
726, 2002.

8. P. Boldi, A. Marino, M. Santini, and S. Vigna. Bubing: Massive crawling for the
masses.

9. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search en-
gine. In Proceedings of the seventh international conference on World Wide Web
7, WWW7, pages 107–117, Amsterdam, The Netherlands, The Netherlands, 1998.
Elsevier Science Publishers B. V.

10. S. Choudhary. M-crawler: Crawling rich internet applications using menu meta-
model. Master’s thesis, EECS - University of Ottawa, 2012. http://ssrg.site.

uottawa.ca/docs/Surya-Thesis.pdf.
11. S. Choudhary, E. Dincturk, S. Mirtaheri, G.-V. Jourdan, G. Bochmann, and

I. Onut. Building rich internet applications models: Example of a better strat-
egy. In F. Daniel, P. Dolog, and Q. Li, editors, Web Engineering, volume 7977
of Lecture Notes in Computer Science, pages 291–305. Springer Berlin Heidelberg,
2013.

12. S. Choudhary, M. E. Dincturk, G. von Bochmann, G.-V. Jourdan, I.-V. Onut, and
P. Ionescu. Solving some modeling challenges when testing rich internet applica-
tions for security. In ICST, pages 850–857, 2012.

13. S. Choudhary, M. E. Dincturk, S. M. M. G. von Bochmann, G.-V. Jourdan, and I.-
V. Onut. Crawling rich internet applications: The state of the art. In Proceedings of
the 2012 Conference of the Center for Advanced Studies on Collaborative Research,
CASCON ’12, Riverton, NJ, USA, 2012. IBM Corp.

14. M. E. Dincturk. Model-based crawling - an approach to design efficient crawling
strategies for rich internet applications. Master’s thesis, EECS - University of Ot-
tawa, 2013. http://ssrg.eecs.uottawa.ca/docs/Dincturk_MustafaEmre_2013_

thesis.pdf.
15. M. E. Dincturk, S. Choudhary, G. von Bochmann, G.-V. Jourdan, and I.-V. Onut.

A statistical approach for efficient crawling of rich internet applications. In ICWE,
pages 362–369, 2012.

16. C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou. Ajax crawl: Making ajax
applications searchable. In Proceedings of the 2009 IEEE International Conference
on Data Engineering, ICDE ’09, pages 78–89, Washington, DC, USA, 2009. IEEE
Computer Society.

17. J. Edwards, K. McCurley, and J. Tomlin. An adaptive model for optimizing per-
formance of an incremental web crawler, 2001.

18. J. Exposto, J. Macedo, A. Pina, A. Alves, and J. Rufino. Geographical partition
for distributed web crawling. In Proceedings of the 2005 workshop on Geographic
information retrieval, GIR ’05, pages 55–60, New York, NY, USA, 2005. ACM.

19. G. Frey. Indexing ajax web applications. Master’s thesis, ETH Zurich, 2007.
http://e-collection.library.ethz.ch/eserv/eth:30111/eth-30111-01.pdf.

20. A. Heydon and M. Najork. Mercator: A scalable, extensible web crawler. World
Wide Web, 2:219–229, 1999.

21. J. Li, B. Loo, J. Hellerstein, M. Kaashoek, D. Karger, and R. Morris. On the
feasibility of peer-to-peer web indexing and search. Peer-to-Peer Systems II, pages
207–215, 2003.

http://ssrg.site.uottawa.ca/docs/Surya-Thesis.pdf
http://ssrg.site.uottawa.ca/docs/Surya-Thesis.pdf
http://ssrg.eecs.uottawa.ca/docs/Dincturk_ MustafaEmre_2013_thesis.pdf
http://ssrg.eecs.uottawa.ca/docs/Dincturk_ MustafaEmre_2013_thesis.pdf
http://e-collection.library.ethz.ch/eserv/eth:30111/eth-30111-01.pdf


22. J. Lo, E. Wohlstadter, and A. Mesbah. Imagen: Runtime migration of browser
sessions for javascript web applications. In Proceedings of the International World
Wide Web Conference (WWW), pages 815–825. ACM, 2013.

23. A. Marchetto, P. Tonella, and F. Ricca. State-based testing of ajax web applica-
tions. In Proceedings of the 2008 International Conference on Software Testing,
Verification, and Validation, ICST ’08, pages 121–130, Washington, DC, USA,
2008. IEEE Computer Society.

24. R. Matter. Ajax crawl: Making ajax applications searchable. Master’s thesis,
ETH Zurich, 2008. http://e-collection.library.ethz.ch/eserv/eth:30709/

eth-30709-01.pdf.
25. A. Mesbah, E. Bozdag, and A. v. Deursen. Crawling ajax by inferring user interface

state changes. In Proceedings of the 2008 Eighth International Conference on
Web Engineering, ICWE ’08, pages 122–134, Washington, DC, USA, 2008. IEEE
Computer Society.

26. A. Mesbah, A. van Deursen, and S. Lenselink. Crawling ajax-based web appli-
cations through dynamic analysis of user interface state changes. TWEB, 6(1):3,
2012.

27. A. Milani Fard and A. Mesbah. Feedback-directed exploration of web applications
to derive test models. In Proceedings of the 24th IEEE International Symposium on
Software Reliability Engineering (ISSRE), page 10 pages. IEEE Computer Society,
2013.

28. S. M. Mirtaheri, D. Zou, G. V. Bochmann, G.-V. Jourdan, and I. V. Onut. Dist-
ria crawler: A distributed crawler for rich internet applications. In In Proc. 8TH
INTERNATIONAL CONFERENCE ON P2P, PARALLEL, GRID, CLOUD AND
INTERNET COMPUTING, 2013.

29. Z. Peng, N. He, C. Jiang, Z. Li, L. Xu, Y. Li, and Y. Ren. Graph-based ajax crawl:
Mining data from rich internet applications. In Computer Science and Electronics
Engineering (ICCSEE), 2012 International Conference on, volume 3, pages 590
–594, march 2012.

30. V. Shkapenyuk and T. Suel. Design and implementation of a high-performance
distributed web crawler. In In Proc. of the Int. Conf. on Data Engineering, pages
357–368, 2002.

31. H. tsang Lee, D. Leonard, X. Wang, and D. Loguinov. Irlbot: Scaling to 6 billion
pages and beyond, 2008.

http://e-collection.library.ethz.ch/eserv/eth:30709/eth-30709-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:30709/eth-30709-01.pdf

	GDist-RIA Crawler: A Greedy Distributed Crawler for Rich Internet Applications

