
Prototype RIA Crawler

Implementation Details

Mustafa Emre Dincturk

We implemented our crawler as a prototype of IBM R© Security AppScan R©

[2]. AppScan is an automated web scanner that is used to detect security vul-
nerabilities and accessibility issues in web applications. To build our crawler,
we made use of some of the existing functionalities in AppScan such as the
JavaScript execution engine and the DOM equivalence algorithm. The crawl-
ing strategies are implemented as a separate module that can be called from
AppScan. Figure 1 shows the simplified RIA crawler architecture.

AppScan

JavaScript

Engine
DOM

Equivalence

Event

Identification

Current DOM

Instance

read & writeread read

data access

control flow

processing component

data component

DOM Identifier

+ Event Identifiers

for Current DOM

Crawling Strategy

Extracted

Model

read & write

Sequence of

Event Identifiers

for Execution

Figure 1: RIA Crawler Architecture

The AppScan component performs the functionalities of a browser. It is
able construct the initial DOM for a given URL, execute JavaScript using

1

its JavaScript Engine sub-component and perform the required manipula-
tions to update the current DOM. AppScan component also contains the
sub-components for Event Identification and DOM equivalence. The Event
identification component detects the DOM elements that have enabled events
on the current DOM and produces identifiers for these events. The DOM
equivalence component generates the DOM identifier for the current DOM.

When the AppScan component is given a URL to crawl, it loads the
page corresponding to the URL, constructs the DOM and then generates the
set of event identifiers for the events found in the DOM and generates the
DOM identifier. (Details of how event and DOM identifiers are generated are
explained below). Then the DOM identifier and the list of event identifiers
are passed to the crawling strategy. The crawling strategy then decides on an
event to explore and returns an event sequence. The event sequence consists
of the event appended to a (possibly empty) transfer sequence, which will
take the crawler to the DOM from where the event will be explored. The
AppScan component executes the received sequence of events and returns
the control back to the crawling strategy providing the event identifiers and
the DOM identifier for the reached DOM. Whenever the crawling strategy
takes control, it updates the extracted model according to the result of the
last event exploration. This process continues until there is no unexplored
event left and hence a model for the URL is extracted.

1 DOM Events and Event Identification

An important component for a RIA crawler is the algorithm to identify the
events in the DOM. To compute an event identifier, we need the ability to
identify the DOM element, the type of the event (for example whether it is
a mouse event like a onmouseover or onclick, a key stroke) and the event
handler (the JavaScript function that will be executed when the event is
triggered). Identification of the DOM element is needed since events are
associated with DOM elements. The event type is needed since the same
DOM element can react to multiple types of events. The event handler is
needed since it defines what happens when the event occurs. As we explain
shortly, it is possible to change the event handlers that are registered to a
DOM element through JavaScript execution. That means the same DOM
element may react to the same event type differently if its event handlers are
changed.

2

1.1 Event Registration Methods

The evolution from simple HTML pages to RIAs has resulted in three differ-
ent ways to register an event handler to a DOM element.

1. As inline HTML: The oldest way is to specify the event handler
as an attribute of the HTML element in the HTML document. For
example, the following shows a div element that reacts to mouse click
events. The event handler is registered using the onclick attribute of
the HTML element. The value of the attribute is the event handler, in
this case a call to a JavaScript function named doSomething.
<div id="id1" onclick="doSomething()">Text content</div>

For anchor a elements, it is also possible to trigger JavaScript code
when the link is clicked by using the href attribute as follows.
Text content

The href attribute is normally used to specify the URL that needs to be
loaded when the anchor is clicked; however, browsers interpret a string
that is prefixed by the keyword ’javascript:” as JavaScript code as in
this example.

2. Assignment via JavaScript: Later, browsers allowed registration of
event handlers by assigning the event handler as a property of the DOM
element through JavaScript. This method made dynamic registration
of event handlers possible. The following example registers the function
named doSomething as an onclick event handler to the element with id
“id1”
<script type="text/javascript">

document.getElementById("id1").onclick = doSomething;

</script>

3. Using DOM Event Specification: The most recent and advanced
way of event registration is through using the event registration model
that is introduced in DOM Level 2 specification. Unlike the previ-
ous methods, which only allow a single event handler for each type of
event, in this model, any number of event handlers can be added for
each type of event using the addEventListenermethod via JavaScript.
(Microsoft implements a slightly different version of this model in IE.)
When multiple event handlers are registered to an event type, all the
registered event handlers are run one after the other when the event oc-
curs. The following example registers two event handlers to the onclick

3

event of the element with id "id1".
<script type="text/javascript">

var element = document.getElementById("id1");

element.addEventListener = ("click", doSomething);

element.addEventListener = ("click", doAnotherThing);

</script>

In this example, when the element is clicked both JavaScript functions,
doSomething and doAnotherThing, will be executed. In this model, it
is also possible to remove a previously registered event handler using
the removeEventListener method.

1.2 Implementation

Our crawler supports all three types of event registrations methods men-
tioned. AppScan component is able to provide us the set of DOM elements
that have registered event handlers. The event handlers that are registered
using method 1 is easily detectable since they are part of the HTML. For
DOM elements that have events registered using methods 2-3, AppScan uses
its JavaScript Engine to keep track of which DOM elements have registered
event handlers.

Once all the elements with event handlers are known, an event identi-
fier needs to be generated for each element and event type. In the current
implementation the event identifier is a string that consists of a DOM ele-
ment identifier and an event type identifier. As the DOM element identifier,
we are using the string representation of the HTML element and its descen-
dants (retrieved using the outerHTML property of the element) and the type
of event. For example, for the following HTML anchor element which has an
event handler registered using href attribute

the produced event identifier looks like
~~HREF

where ~~ is a delimiter separating the DOM element identifier and the event
type identifier. The event type identifier HREF shows that the element has
an event registered to it using its href attribute. In this example, the event
handler doSomething() information is part of the DOM element identifier.

For event handlers registered through JavaScript (methods 2 and 3) the
event identifier also contains the hash of the event handler(hash of the defini-
tion of the javascript function) For event handlers registered through HTML

4

(method 1), the event handler information is already part of the DOM ele-
ment identifier as we have seen in the example above.

1.2.1 Event Types

Our crawler currently supports a subset of the mouse events and the href
events (which are also mouse events since they are triggered when an anchor
is clicked). The mouse events that are considered are mouseover, mouseenter,
mousedown, mouseup, click, dblclick, mouseout and mouseleave. Instead of
considering all these mouse events as individual events we consider them as
a single composite event that we call as GroupedMouseEvent. That is, if an
element has any subset of the mentioned mouse events enabled, our crawler
executes the corresponding event handlers in sequence as written above. The
main reason for doing this is to better simulate a user’s behaivour. When
a human user wants to click on an element in the browser, she has to first
move the mouse over to the element which will trigger the mouseover and
mouseenter handlers and then she will be able to click it. In addition, a
mouse click event handler is only triggered after the mousedown and mouseup
handlers are executed. Similarly a double click is only triggered after the click
event handler. It is also a typical user behavior to move the mouse away from
the element once it is clicked. For this reason the sequence ends with running
any mouseout and mouseleave event handlers.

In the near future, we are planning to introduce a new mouse event se-
quence in addition to the mentioned sequence. The new sequence will exclude
the dblclick event handlers from the current sequence. Thus we will consider
the double click and click as different events. (Until now none of our test
websites had double click event handlers, so not considering them separately
did not have any effect). Also the crawler currently considers only the left
mouse button clicks (middle and right clicks are currently ignored). More
complex mouse gestures (such as drag and drop) and key strokes are also not
supported. Such event types could be included in the future.

2 DOM Equivalence

For DOM Equivalence, our crawler uses AppScan’s DOM Equivalence algo-
rithm [1] with a slight modification. The original algorithm implemented in
AppScan produces an identifier for a given DOM by only considering the

5

underlying HTML structure without taking into account the events enabled
in the DOM. Since this algorithm only considers the HTML structure, in the
remainder we refer to it identifier produced by this algorithm as HTML ID.
We believe it is important to make sure that the DOMs in the same equiva-
lence class should have the same set of enabled events. For this reason, our
DOM identifiers are the combination of the HTML ID produced by AppScan
and an identifier generated for the set of enabled events in the DOM. The
latter identifier is simply produced by first sorting the set of event identifiers
enabled in the DOM into a list and then concatenating the individual event
identifiers in the list.

2.1 Computing the HTML ID

The algorithm aims at identifying the pages with similar page structure by
reducing the repeating patterns in a given HTML to reach a canonical rep-
resentation of the HTML document such that the canonical representation
will be the same for any other structurally equivalent document. The moti-
vation comes from the observation that HTML pages often contain repeating
patterns, especially when the content is listed using HTML tables and lists.
For example, Figure 2 shows the rendering of an HTML table in the browser
on the left and the corresponding HTML body on the right. As we can see,
the HTML table body contains rows, <tr> elements, and each row contains
columns, <td> elements.

When all the text and attributes are stripped from the HTML (leaving
only the HTML tags), the subtree rooted at <tbody> looks like
<tbody>

<tr><td></td><td><a></td><td></td></tr>

<tr><td></td><td><a></td><td></td></tr>

<tr><td></td><td><a></td><td></td></tr>

</tbody>

where each row <tr> follows the same pattern. The algorithm recognizes
such patterns and reduces them. In this example the subtree would be like
the following after the reduction.
<tbody>

<tr><td></td><td><a></td><td></td></tr>

</tbody>

By eliminating such repetitions the algorithm considers two pages as equiv-
alents when they have the same pattern repeated different number of times,

6

Figure 2: A page containing a table (left) and the body of the corresponding
HTML document (right)

everything else being the same. For this example, the produced identifier will
not change when the number of rows is changed in the table. In addition,
once all the reductions are done in a subtree, the algorithm sorts the remain-
ing tags so that the algorithm is not affected by reordering of the elements
in the page.

The algorithm allows the user to configure which HTML tags and at-
tributes to consider as well as whether to include the text content for the
computation of the HTML ID. (The configuration we used for the exper-
imental study is to include the text content, all HTML tags and none of
the attributes). When provided an HTML page, the algorithm produces the
identifier by applying the following steps:

1. The HTML is stripped out of anything that is not included in the user
configuration.

2. Algorithm identifies a parent node whose children are all leaf nodes in
the tree.

3. Algorithm traverses the leaf nodes and at each leaf node, it checks if
the sequence of already traversed leaves and the current leaf node forms

7

a pattern. A pattern is detected if the sequence contains consecutive
repeating elements. For example the sequence
<A><C><A><C>

contains the consecutive repeating pattern <A><C> whereas
<A><C><D><A> has no consecutive repeating pattern. Al-
though <A> is repeated, the repetition is not consecutive.

4. When such a repeating pattern is detected, all the repetitions are elim-
inated.

5. When the last leaf node of the parent is processed, the reduced sequence
is sorted and the parent node is turned into a leaf node containing the
reduced sequence. For example, when the last leaf in the leaf node
sequence <A><C><A><C> of the parent <Parent> is pro-
cessed, the result would be a new leaf node
<Parent><A><C></Parent>

(i.e. a leaf node <Parent> with text "<A><C>").

6. Steps 2-5 are repeated until the stripped HTML is reduced to a single
node. At this point the resulting node uniquely identifies the equiva-
lence class of the HTML page. By hashing the content of the node, the
HTML ID is produced.

References

[1] K.A. Ayoub, H. Aly, and J.M Walsh. Dom based page uniqueness iden-
tification. http://ip.com/patapp/CA2706743A1, 2010. [Online].

[2] IBM. IBM Security AppScan family.
http://www-01.ibm.com/software/awdtools/appscan/. [Online].

8

http://ip.com/patapp/CA2706743A1
http://www-01.ibm.com/software/awdtools/appscan/

	DOM Events and Event Identification
	Event Registration Methods
	Implementation
	Event Types

	DOM Equivalence
	Computing the HTML ID

