
DRAFT
Adaptive Crawling

Driven by Structure-Based Link
Classification

Muhammad Faheem Pierre Senellart
Institut Mines–Télécom

Télécom ParisTech; CNRS LTCI Paris, France
firstname.lastname@telecom-paristech.fr

July 28, 2014

User-generated content on the Web has been growing at a fast pace, and has
become an important data resource for which much effort has been put into devel-
oping wrappers (i.e., programs that extract content from HTML pages). However,
current wrapper generation systems focus on individual Web pages, while retrieving
Web pages to extract from often remains a manual or supervised process. Generic
crawling approaches are inefficient in that they cannot distinguish among various
page types, and cannot target content-rich areas of a Web site. In this paper, we
study the problem of efficient unsupervised Web crawling of content-rich Web pages.
We propose ACEBot (Adaptive Crawler Bot for data Extraction), a structure-driven
crawler that utilizes the inner structure of the pages and guides the crawling process
based on the importance of their content. ACEBot works in two phases: in the offline
phase, it constructs a dynamic site map (limiting the number of URLs retrieved),
learns a traversal strategy based on the importance of navigation patterns (selecting
those leading to valuable content); in the online phase, ACEBot performs massive
downloading following the chosen navigation patterns. Extensive experiments over
a large dataset illustrate the effectiveness of our system. ACEBot ignores duplicate
and invalid pages and crawls only important content with high precision and recall.
Our system makes 5 times fewer HTTP requests as compared to a generic crawler,
without compromising on effectiveness.

1 Introduction

The Web and User-Created Content The incredible growth of the World Wide Web has
revolutionized the information age. Now the Web has become the largest data repository available

1

DRAFT
to humankind, and several efforts have been made to utilize this resource. The Web is widespread
(but ephemeral) and many social activities are happening there everyday. User-created content
(UCC) has been growing at a very fast pace [19]. The cultural effects of this social phenomenon
are also significant. Indeed, the Web has become a vast digital cultural artifact that needs to be
preserved. But, unfortunately, important parts of our cultural heritage have already disappeared;
as an example, the first ever Web page (its first version) that Tim Berners-Lee wrote back in 1990
has reportedly been lost [4]. Certainly, Web preservation is a cultural and historical necessity for
preserving valuable information for historian, journalists, or social scientists. Indeed, this is an
objective of Web archiving [17], which deals with selecting, crawling, preserving, and ensuring
long-term access to historical Web content.

A large part of Web content (especially user-created content) belong to Web sites powered
by content management systems (CMSs) such as vBulletin, phpBB, or WordPress [11]. The
presentation layer of these CMSs use predefined templates (which may include left or right
sidebar of the Web document, header and footer, navigation bar, main content, etc.) for populating
the content of the requested Web document from an underlying database.

These templates control the layout and appearance of the Web pages. A study [11] has found
that 40-50% content on the Web (in 2005) was template-based, growing at the rate of 6-8% per
year. Depending on the request, the CMSs may use different templates for presenting information;
e.g., for blogs, the list of posts type of page may use a different template than the single post Web
page that also include comments. These template-based Web pages form a meaningful structure
that mirror the implicit logical relationship between Web content across different pages within a
Web site. Many templates are used by CMSs for generating different type of Web pages. Each
template generates a set of Web pages (e.g., list of blog posts) that share the common structure,
but differ in terms of content. These templates are consistently used across different regions of
Web site. More importantly, in a given template (say, list of posts), links leading to a specific kind
of content (say, individual posts) usually share a common layout and presentation properties.

Crawling the Web Many public and private institutions are archiving large collection of public
content such as Internet Archive1, Internet Memory2, or a variety of national libraries around the
world. Robots of commercial search engine such as Google and Bing crawl information from
UCC on the Web to improve the quality of search results. Though Web content exists in large
amount, due to limited bandwidth, storage, or indexing capabilities, only a small fraction of the
content can be harvested by Web crawlers. This is true for crawlers of institutions with limited
resources (e.g., the national library of a small country). This is even true for a company such as
Google, that has discovered more than a trillion unique URLs [1] in the frontier, but indexed
around 40 billions Web pages (as of June, 2013.) [9]. This suggests a need to develop a crawling
strategy that not only effectively crawls Web content from template-based Web sites, but also
efficiently minimizes the number of HTTP requests by avoiding non-interesting Web pages.

A generic Web crawler performs inefficient crawling of the Web sites. It crawls the Web with
no guarantee of content quality. A naive breadth-first (shallow) strategy cannot ensure access to
all content-rich pages, while a simple depth-first (deep) crawl may fetch too many redundant and

1http://archive.org/
2http://internetmemory.org/

2

http://archive.org/
http://internetmemory.org/

DRAFT
invalid pages (e.g., may login failure pages), in addition to the possibility of falling into robot
traps. Thus, a generic methodology crawls a set of Web pages that may lack real interest for a
given user or application. An ideal crawling approach should solve the two following problems:
first what kind of Web pages are important to crawl (to avoid redundant and invalid pages); and
second which important links should be followed and what navigation patterns are required on
the Web site?

Towards an Intelligent Crawler We introduce in this article an intelligent crawling technique
that meet the above-stated criteria. We propose a structure-driven approach that is more precise,
effective, and achieve higher quality level, without loss of information. It guides the crawler
towards content-rich areas: this is achieved by learning the best traversal strategy (a collection of
important navigation patterns) during an offline phase that ultimately guides the crawler to crawl
only content-rich Web pages during online phase.

Our structure-driven crawler, ACEBot, first establishes connections among Web pages based
on their root-to-link paths, then rank paths according their importance (i.e., root-to-links paths
that lead to content-rich Web pages), and further learns a traversal strategy for bulk-downloading
of the Web site. Most existing efforts on Web crawling only utilize hyperlink-related information
such as URL pattern and anchor text [6, 18] to design a crawling strategy. Such approaches
ignore the relationships among various Web pages and may judge the same kind of hyperlink
appearing on different pages independently. Our main claim is that structure-based crawling
strategy not only cluster Web pages which require similar crawling actions, but also helps to
identify duplicates, redundancy, boilerplate, and plays as well an important role in prioritizing the
frontier. Web pages that requires similar navigation patterns are believed to have similar types of
content and to share the same structure.

We first present our model in Section 2. The algorithm that ACEbot follows is then presented
in detail in Section 3. We finally present experiments in Section 4. Before concluding, we discuss
the related work in Section 5.

2 Model

In this section, we formalize the model of our proposed approach: we see the Web site to crawl as
an abstract directed graph, that is rooted (typically at the homepage of a site), and where edges are
labeled (by structural properties of the corresponding hyperlink). We first consider the abstract
problem, before explaining how we turn a Web site to crawl into an instance of this problem.

2.1 Formal Definitions

We fix countable sets of labels L and items I . Our main object of study is the graph to crawl:

Definition 1. A rooted graph is a 5-tuple G = (V,E,r, ι , l) where V is a finite set of vertices,
E ⊆ V 2 is a set of directed edges (potentially including loops), r ∈ V is the root of the graph,
ι : V → 2I assigns a set of items to every vertex, and l : E→L assigns a label to every edge.

Here, items serve to abstractly model the interesting content of Web pages. We naturally extend
the function ι to a set of nodes X from G by posing: ι(X) =

⋃
u∈X ι(u).

3

DRAFT
We introduce the standard notion of paths within the graph:

Definition 2. Given a rooted graph G = (V,E,r, ι , l) and vertices u,v ∈V , a path from u to v is a
finite sequence of edges e1 . . .en from E such that there exists a set of nodes u1 . . .un−1 in V with:
• e1 = (u,u1);
• ∀1 < k < n,ek = (uk−1,uk);
• en = (un−1,v).

The label of the path e1 . . .en is the word over L l(e1) . . . l(en).

Critical to our approach is the notion of navigation pattern that uses edge labels to describe
which paths to follow in a graph:

Definition 3. A navigation pattern p is a regular expression over L . Given a graph G =
(V,E,r, ι , l), the result of applying p onto G, denoted p(G), is the set of nodes u such that there
exists a path from r to u with a label a prefix of a word in the language defined by p.

We extend this notion to a finite set of navigation patterns P by letting P(G) :=
⋃

p∈P p(G).

Note that we require only a prefix of a word to match: a navigation pattern does not only return
the set of pages whose path from the root matches the regular expression, but also pages on those
paths. For instance, consider a path e1 . . .en from r to a node u, such that the navigation pattern p
is the regular expression l(e1) . . . l(en). Then, the result of executing navigation pattern p contains
u, but also all pages on the path; more generally, p returns all pages whose path from the root
matches a prefix of the expression l(e1) . . . l(en).

Navigation patterns are assigned a score:

Definition 4. Let G = (V,E,r, ι , l) be a rooted graph. The score of a finite set of navigation
patterns P over G, denoted ω(P,G) is the average number of distinct items per node in P(G), i.e.:

ω(P,G) =
|ι(P(G))|
|P(G)|

.

We can now formalize our problem of interest: given a rooted graph G and a collection of
navigation patterns P (that may be all regular expressions over L or a subclass of regular
expressions over L), determine the set of navigation patterns P⊆P of maximal score over G:
argmaxP⊆P ω(P,G).. Unfortunately, we will show this problem is NP-hard. First, determining if
the score is at least a given number is intractable:

Proposition 1. Given a graph G, a collection of navigation patterns P , and a constant K,
determining if there exists a finite subset P⊆P with score over G at least K is an NP-complete
problem.

Proof. First, we argue that our problem is in NP, since given a graph G, a collection of navigation
patterns P and a constant K, we can non-deterministically guess a subset P ∈P , compute its
score over G, and check whether this score is at least K. The running time is polynomial.

For hardness, we apply a reduction from Set Cover. Given an instance of Set Cover (i.e., given
a finite set U , a collection of sets (Si)1≤i≤m of elements of U , and an integer k, determine whether

4

DRAFT
there exists a set C ⊆ {1,2 . . .m} such that |C| ≤ k and

⋃
i∈C

Si =U), we construct the instance of

our problem.
The set of items I is a superset of U ; the set of labels has m+1 distinct labels l0, l1 . . . lm. We

first construct G = (V,E,r, ι , l) as follows: V = {x0,x1, . . . ,xN ,s1, . . . ,sm} is a set of N +1+m
nodes (where N is an integer that we will define later on). E consists of the following edges:
• For all 1≤ i≤ N−1, an edge (xi,xi+1) with label l(xi,xi+1) = l0.
• For all 1≤ i≤ m, an edge (xN ,si) with label l(xN ,si) = li.

The root r is x0. The mapping ι is defined by ι(xi) := /0 for 0≤ i≤N and ι(si) := Si for 1≤ i≤m.
For P we take the set { l∗0 li | 1 ≤ i ≤ m}. The score of a pattern l∗0 li ∈P is ω(l∗0 li,G) = |Si|

N+1 .

For PC = { l∗0 li | i ∈C} with C ⊆ {1,2 . . .m}, ω(PC,G) =

∣∣∣∣⋃
i∈C

Si

∣∣∣∣
|C|+N . See Figure 1 for an illustration

of the construction.

x0 x1 x3 · · · xi+1 S2

S1

··
·

Sn

l0 l0 l0 l0 l2

l1

ln

Figure 1: Reduction from Set Cover

We now show that there exists a subset P⊆P with score over G at least |U |k+N if and only if the
set cover instance has a solution of size at most k.
⇐ Assume the set cover instance has a solution of size at most k. Then there is a set

C ⊆ {1,2 . . .m} such that |C| ≤ k and
⋃

i∈C Si = U . The score of the set of patterns PC is:

ω(PC,G) =

∣∣∣∣⋃
i∈C

Si

∣∣∣∣
|C|+N ≥

|U |
k+N .

⇒ Let PC such that ω(PC,G)≥ |U |
k+N . We distinguish two cases. First, assume

⋃
i∈C

Si =U . Then∣∣∣∣⋃
i∈C

Si

∣∣∣∣
|C|+N ≥

|U |
k+N implies that |C| ≤ k and (Si)i∈C is a solution to the set cover problem. Otherwise, we

have
∣∣∣∣⋃
i∈C

Si

∣∣∣∣≤ |U |−1. We will show that this leads to a contradiction for a well-chosen value of N

(observe that the choice of N has been left fully open until now). We take N = m× (|U |−1)+1
(as U is an input to the set cover problem, having N + 1 + m nodes in G still results in a

5

DRAFT
polynomial-time construction). We have:

ω(PC,G) =

∣∣∣∣⋃
i∈C

Si

∣∣∣∣
|C|+N

≤ |U |−1
|C|+m× (|U |−1)+1

≤ |U |−1
m× (|U |−1)+1

=
1

m+ 1
|U |−1

whereas:

ω(PC,G)≥ |U |
k+N

=
|U |

k+m× (|U |−1)+1

≥ |U |
m+m× (|U |−1)+1

=
|U |

m|U |+1
=

1
m+ 1

|U |

>
1

m+ 1
|U |−1

.

We reach a contradiction that shows that, necessarily,
⋃

i∈C
Si =U .

This concludes the reduction. The construction we used is polynomial time: the graph G is at
most quadratic in the size of the original set cover instance (the quadratic explosion comes from
the choice of N).

A simple corollary of this proposition shows the hardness of determining if a set of navigation
patterns has optimal score:

Corollary 1. Given a graph G and a collection of navigation patterns P , determining if one
finite subset P⊆P has maximal score over G is a coNP-complete problem.

Proof. First, We argue that determining whether one subset P⊆P has maximal score over G is
in coNP: to determine whether P is not maximal, guess anther subset of navigation patterns P′,
compute its score in polynomial time, and check whether its less than the score of P.

Let’s turn to the hardness. We reduce from the previous proposition. Let G = (V,E,r, ι , l) be
a graph, P be a collection of navigation patterns, K a constant. Let n = |V |. Without loss of
generality, we assume that ι(r) = /0 (otherwise, just add another dummy root, and update other
parameters accordingly). Let q = argmin1≤i≤n,bKic6=Ki K− bKic

i .
We construct a graph G′ = (V ′,E ′,r, ι ′, l′) as an extension of G: V ′ = V ∪{y0, . . . ,yq}, E ′ =

E ∪{(r,y0),(y0,y1), . . . ,(yq−1,yq)}, r is the same, ι ′ is the same on nodes of V , ι(yi) = /0 for
0≤ i < n, and ι(yn) is a set of bK×qc fresh items. The label of the fresh edges is set to a fresh
label λ . For the collection of navigation patterns, we take P ′ = P ∪{λ ∗}.

Now, we claim that there exists a subset P ⊆P with score over G at least K if and only if
{λ ∗} has maximal score over G′. Note that ω({λ ∗},G′) = bKqc

q < K. First assume that such a
subset with score over G at least K exists. But ω(G′,P) = ω(G,P)≥ K. Then {λ ∗}, with score

6

DRAFT
html

div

div

a

table

thead

table

thead

tbody

a

tbody

a

tbody

a

(a) DOM tree representation for selected Web
links

l1 html-table-thead-table-thead-tbody-a
l2 html-div-div-a
l3 html-table-thead-tbody-a

(b) root-to-link paths

Figure 2: A sampled Web page represented by a subset of the root-to-link paths in a corresponding
DOM tree representation.

< K, cannot have maximal score. Conversely, assume such a subset does not exist. Let P be any
subset of P . By definition of q, ω(G′,P) = ω(G,P)≤ bKqc

q = ω(G′,{λ ∗}) and thus {λ ∗} has
maximal score.

Thus, there is no hope in obtaining of efficiently obtaining an optimal set of navigation patterns.
In Section 3, we will develop a greedy approach to the selection of navigation patterns.

2.2 Model generation

We now explain how we consider crawling of a Web site in the previously introduced abstract
model.

A Web site is any HTTP-based application, formed with a set of interlinked Web pages that
can be traversed from some base URL, such as http://www.wsdm-conference.org/. The
base URL of a Web site is called the entry point of the site. For our purpose, we model a given
Web site as a directed graph (see Definition 1), where the base URL becomes the root of the
graph. Each vertex of the graph represents a distinct Web page and, following Definition. 1, a
set of items is assigned to every vertex. In our model, the items are all distinct 2-grams seen
for a Web page. A 2-gram for a given Web page is a contiguous sequence of 2 words within its
HTML representation. The set of 2-grams has been used as a summary of the content of a Web
page [10]; the richer a content area is, the more distinct 2-grams. The set of items associated to
each vertex plays an important role in the scoring function (see Definition 4), which eventually
leads to selecting a set of Web pages for crawling.

A web page is a well-formed HTML document and its Document Object Model (DOM [24])
specifies how objects (i.e., texts, links, images, etc.) in a Web page are accessed. Hence, a root-
to-link path is a location of the link (i.e., <a> HTML tag) in the corresponding DOM tree [24].
Figure 2a shows a DOM tree representation and Figure 2b illustrates its root-to-link path for a
sample Web page.

7

http://www.wsdm-conference.org/

DRAFT
Following the Definition 1, each edge of the graph is labeled with a root-to-link path. Assume

there is an edge e(u,v) from vertex u to v, then a label l(e) for edge e is the root-to-link path of
the hyperlink pointing to v in vertex (i.e., Web page) u. Navigation patterns will thus be (see
Definition 3) regular expression over root-to-link paths.

Two Web pages reachable from the root of a Web site with paths p1 and p2 whose label is the
same are said to be similar.

Consider the scoring of a navigation pattern (see Definition 4). We can note the following:
• the higher the number of requests needed to download pages comprised by a navigation

pattern, the lower the score;
• the higher the number of distinct n-grams in pages comprised by a navigation pattern, the

higher the score.

3 Deriving the Crawling Strategy

In this section, we detail the crawling strategy for any given Web site. We begin by illustrating our
approach with a simple example and then formally describe our unsupervised crawling technique.

3.1 Simple Example

Consider the homepage of a typical Web forum, say http://forums.digitalspy.co.uk/, as
the entry point of the Web site to crawl. This Web page may be seen as a two different regions.
There is a region with headers, menus and templates, that are presented across several Web pages,
and is considered as a non-interesting region from archiving perspective. The other region at
the center of the Web page is a content-rich area and required to be be archived. Since these
pages are generated by a CMS (vBulletin in this particular case), the underlying templates have
a coherent structure across similar Web pages. Therefore links contained in those pages obey
regular formating rules. In our example Web site, the links leading to blog posts and the messages
within an individual post should have some layout and presentational similarities.

Figure 2a presents a subset of the DOM tree for the example entry point Web page and its
root-to-link paths are shown in Figure 2b. Figure 4a shows a truncated version of the generated
graph (see Section 2.2) for the corresponding site. Each vertex represents a unique Web page in
the graph. These vertices are connected through directed edges, labeled with root-to-link paths.
Each vertex of the graph is assigned a number of distinct 2-gram seen for the linked Web page
(e.g., 3,227 distinct 2-grams seen for p3). Furthermore, the set of Web pages (i.e., vertices) that
share the same path (i.e., edge label) are clustered together (see Figure 4b). The newly clustered
vertices are assigned a collective 2-gram set seen for all clustered Web pages. For instance, the
clustered vertex {p3, p4} has now 5,107 distinct 2-gram items. After clustering, all possible
navigation patterns are generated for the graph. This process is performed by traversing the
directed graph. Table 1 exhibits all possible navigation patterns. Afterwards, each navigation
pattern (possibly combination of root-to-link path) is assigned a score. The system does not
compute the score for any navigation pattern that does not lead the crawler from the entry point
of the Web site. Therefore, the system has ignored the navigation pattern l4 (shown underlined).
Here the score 2600 for navigation pattern l4 is computed just for the sake of understanding, in

8

http://forums.digitalspy.co.uk/

DRAFT

I

II I

Navigation Patterns
Construction

Sitemap
Construction

Navigation Patterns
Selection

Crawler Repository

XML
Knowledge

base

Figure 3: Architecture of ACEBot, which consists of two phases: (I) offline sitemap construction
and navigation patterns selection; and (II) online crawling.

practice, the system will not compute it. Once all possible navigation patterns are scored then
the navigation pattern with highest score is selected (since highest score ensures the archiving of
core-contents). Here, the navigation pattern l1 is selected (not l4).

The process of assigning the score to the navigation patterns keeps going after each selection
for navigation patterns not selected so far. Importantly, 2-gram items for already selected vertices
are not considered again for non-selected navigation patterns. Therefore, in the next iteration, the
navigation pattern l1l4 does not consider items from Web pages of the l1 navigation pattern. The
process of scoring and selecting ends when no interesting navigation pattern is left to follow.

Since we believe Web sites that belong to the same CMSs may enjoy the common templates,
learned set of navigation patterns may work for several such Web sites.

3.2 Detailed Description

In this section, we detail the process of the unsupervised structure-driven crawler (ACEBot)
proposed in our approach. First, we discuss the sitemap construction module. Then we present
the navigation pattern construction and selection modules.

ACEBot (see Figure 3) mainly consists of two phases: offline and online phase. The aim of
the offline phase is to first construct the sitemap and cluster the vertices that share the similar
edge label. Then a set of crawling actions (i.e., best navigation patterns) are learned to guide the

9

DRAFTentrypoint p4

2039

p1

239

p2

754

p3

3227

p5

2600

l 2

l3

l 1

l1 l4

(a) Before clustering

entrypoint p3 p4

5107

p1

239

p2

754

p5

2600

l 2

l3

l1 l4

(b) After clustering

entrypoint p3 p4

5107

p1

239

p2

754

p5

2600

(l
2,

23
9)

(l3 ,754)

(l1,2553.5) (l4,2600)

(c) After scoring
Figure 4: Truncated Site Model with scores for the exemplary Web site (see Figure 2b for full

labels)
massive crawling in online phase.

Algorithm 1 gives a high-level view of the navigation pattern selection mechanism for a given
entry point (i.e., home page). Algorithm 1 has six parameters. The entry point r is the home
page of a given Web site. The Boolean value of the parameter d specifies whether the sitemap of
the Web site should be constructed dynamically. The argument k defines the depth (i.e., level or
step) of navigation patterns to explore. The Boolean ac specifies whether to limit the continuity
of navigation patterns to a fixed value of 3. For instance, for page-flipping navigation pattern
/(/html/body/div[contains(@id,"navigation")]/a/@href{click/})+, the + indicate that the
action will be executed atleast once (i.e., {1,∗}, where 1 is a lower limit). When Boolean value
true is passed to ac, then the {1,3} bound will be used. We have restricted the upper bound to 3;
this will ensure that the navigation pattern that form the continuity of similar pages (e.g., page
flipping navigation pattern) is selected. If we do not consider the upper bound 3 but just 1, then
there are chances that page-flipping navigation patterns may be neglected because of lower score.
Such navigation patterns may consist of a single page, and score based on one page may not
lead to the right selection. This may also select other non important navigation patterns (that
are not page-flipping actions). The experiments have shown that there were cases when weak
navigation patterns were selected, but were avoided when limiting the continuity constraint to

10

DRAFT
NP total 2-grams distinct 2-grams score

l4 2600 2600 2600
l1 5266 5107 2553.5
l1, l4 7866 7214 2404.7
l3 754 754 754
l2 239 239 239

Table 1: Navigation patterns with score for the example of Figure 4

Input: entry point r, dynamic sitemap d, navigation pattern continuity limit ac,
navigation-step k, a set of attributes a, completion ratio cr

Output: a set of selected navigation patterns SNP
siteMap← generateSiteMap(r,d);
clusteredGraph← performClustering(siteMap);
for r ∈ R do

navigationPatterns← getNavigationPatterns(r,clusteredGraph,k,ac,a);
NP← updateNavigationPatterns(navigationPatterns);

while not cr do
topNP← getTopNavigationPattern(NP,SNP);
SNP← addToSelectedNP(topNP);
NP← removeSubNavigationPatterns(topNP);

Algorithm 1: Selection of the navigation patterns

3. The argument a passes the set of attributes (e.g., id, and class) that should be considered
when constructing navigation patterns. cr sets the completion ratio, and the process of selecting
navigation patterns ends when this criteria met.

The goal of the offline phase is to obtain useful knowledge for a given Web site based on a
few sample pages. The sitemap construction is the foundation of the whole crawling process.
The quality of sampled pages is important to decide whether learned navigation patterns target
the content-rich part of a Web site. We have implemented a double-ended queue (similar to
the one used in [5]), and then fetched the Web pages randomly from the front or end. We have
limited the number of sampled pages to 3000, and detailed experiments (See Section 4) have
found that the sample restriction was enough to construct the sitemap of any considered Web
site. The generateSiteMap procedure takes a given entry point as parameter and returns a sitemap
(i.e., site model) as described in Definition 1. The graph vertices are Web pages and edges
between these vertices are root-to-link (location of the Web link) paths. For each Web page, the
procedure analyze the links (i.e., <a> HTML tags) and their location within the DOM tree. It
also computes distinct 2-grams (contiguous sequence of 2 consecutive words) seen for each Web
page. A unique vertex is formed for each Web page and it is connected with its links via directed
outgoing edges (See Figure 4a). Further, each Vertex of the graph is labeled with a number of
distinct 2-grams seen for its Web page, and each arc leading to link is labeled with root-to-link
path(see Figure 2b, 4a).

Intuitively, we assume that few Web links (i.e., <a> HTML tags) share the root-to-link paths

11

DRAFT
within a Web page. Therefore, a vertex may have several destination vertices who share the same
edge label. The importance of a specific navigation pattern (i.e., root-to-link path) ensures that the
destination nodes hold the content-rich area of a Web site. This eventually helps to estimate the
importance of the crawled Web pages. We cluster Web pages which share the similar navigation
patters, and thus it is first approximation to approach the problem of discovering similar Web
pages.

The procedure performClustering in algorithm 1 clusters the vertices with similar edge labels.
It performs breadth-first traversal over the graph, starting from each root till the last destination
vertex. For instance, Figure 4b, vertex p3 and p4 share the label l1 and thus are clustered together.
The 2-gram measure is also computed for each clustered vertex. More precisely, the clustering of
the similar nodes is performed in two way:
• Clustering the destination vertices that share the edge label. For instance, list of blog posts

where label l2 is shared among several vertices.
• Let vertex v′ has an incoming edge from vertex v with label l1, and also vertex v′ has

an outgoing edge to vertex v′′ with similar label l1. Since v′ and v′′ share edge label,
therefore these vertices will be clustered. For instance, page-flipping links (For instance,
post messages that may exist across several pages) usually has the same root-to-link path.
These type of navigation patterns end with + (e.g., /html/body/div[contains(@class ,"
navigation")])+), that indicate that crawling action should be performed more than once
on similar Web pages during online phase. These type of actions has two advantages: learn
a navigation pattern that hold the portion of Web site with many pages, and give enough
evidence of it selection; inform the online phase to execute the action several times.

Moreover, the clustering phase also ensures that redundant Web pages do not play a role in
selection of the best navigation patterns. Since we are computing the number of distinct 2-gram
items for each Web page, therefore the clustering phase does not group any new Web page which
has similar 2-gram items to the existing (already clustered) Web page. For instance, the login
page may always has the similar 2-grams items.

Once the graph is clustered, the getNPWithScore extracts all possible navigation patterns for
each root vertex r ∈ R. The procedure takes three parameters clusteredGraph, r, and k as input.
The k parameter limits the number of navigation steps for a specific root vertex r. The procedure
generates the navigation patterns using depth-first traversal approach where depth is limited to k
(i.e., number of navigation-steps). Since the aim of our approach is to find a set of navigation
patterns that lead the crawler from entry point of the Web site to the interesting pages, therefore,
here we only consider the navigation patterns that has root vertex as a start node. Hence, a set of
navigation patterns are generated, starting from root vertex till the k number of navigation-steps.
This step will be performed for each root vertex and updateNavigationPatterns will update the
set of navigation patterns NP accordingly.

The getTopNavigationPattern procedure returns a top navigation pattern on each iteration. The
procedure takes two parameters NP (a set of navigation patterns), and SNP (a set of selected
navigation patterns) as input. This procedure applies the subset scoring function (see Definition 4)
and computes the score for each navigation pattern according to the rewritten scoring function as
defined in section 2.2. The items(NP) is computed by counting the total number of distinct 2-
grams words seen for all vertices that share the navigation pattern NP. The size of the navigation
pattern NP (i.e., size(NP)) is the total number of vertices that shares the NP. The SNP parameter

12

DRAFT
is passed to the procedure to ensure that only new data rich areas are identified. Therefore, the
scoring function does not consider the Web pages (i.e., clustered vertices), which are already
discovered and hence does not take into account the score associated with them to evaluate
new vertices. More precisely, assume the l1l2 navigation pattern is already selected. Now the
scoring function for navigation pattern l1l2l3 does not take into account the score for navigation
pattern l1l2, but only l3 score will play a role in its selection. Eventually, it guarantee that the
system always select the navigation patterns with newly discovered Web pages with valuable
content. The removeSubNavigationPatterns procedure removes all the sub navigation patterns.
For instance, if navigation pattern l1l4l5 is selected first then there is no need to evaluate the score
for the navigation pattern l1l4 (if not already selected), since it will not guide to the new Web
pages.

The redundant cluster (i.e., any two navigation patterns that has similar 2-gram items) will also
not be selected by the getTopNavigationPatterns procedure. For instance, for blog-like Web sites,
a same blog post may accessible by tag, year, etc. Consider navigation patterns l1l5 and l1l6 lead
the crawler to redundant Web pages, and if the l1l5 is already selected then the l1l6 will not be
selected. The l1l6 will get low score since it does not learn the new 2-grams items. Similarly,
any navigation pattern that has redundant pages inside will have few distinct 2-grams items, and
therefore will get a low score from the scoring function and thus will have less probability of its
selection.

The selection of navigation patterns ends when all navigation pattern from the set NP are
selected or when content-rich Web pages met with the criteria (i.e. completion ratio cr condition
satisfied). In our implementation, we have set the criteria to the 95% coverage of distinct 2-gram
items seen for given entry point. The example of such a navigation pattern is:
doc("www.rockamring-blog.de/index.html")
/(/html/body/div[contains(@id,"wrapper")]/div[contains(@id,"navigation")]/a//@href{click
/})+
/(/html/body/div[contains(@id,"wrapper")]/div[contains(@id,"post-")]/a/@href{click/})

We use here a restriction of the OXPath [21] language (see Figure 5) for the syntax navigation
patterns.

When selected navigation patterns reaches the cr coverage of the total number of distinct 2-
grams seen on the sitemap, the system will call the online phase and feed the selected navigation
patterns to the crawler for massive online crawling.

4 Experiments

In this section, we present the experimental results of our proposed system. We compare the
performance of ACEBot with AAH [10] (our previous work, that relies on a hand-written
description of given Web sites), iRobot [5] (a system of the literature dedicated to the efficient
crawling of Web forums), and GNU wget3 (a traditional Web crawler), in terms of efficiency and
effectiveness.

The open-source ACEBot code and the experimental dataset (a list of sites) are freely available
at http://perso.telecom-paristech.fr/~faheem/acebot.html.

3http://www/gnu.org/software/wget/

13

http://perso.telecom-paristech.fr/~faheem/acebot.html

DRAFT
〈expr〉 ::= "doc" "(" 〈url〉 ")" (〈estep〉)+

〈estep〉 ::= 〈step〉 | 〈kleene〉
〈step〉 ::= "/" "("〈action〉 ")"
〈kleene〉 ::= "/" "(" 〈action〉 ")" ("*" | 〈number〉)
〈action〉 ::= ("/" 〈nodetest〉)+ "{click/}"
〈nodetest〉 ::= tag | "@" tag

Figure 5: BNF syntax of the OXPath [21] fragment used for navigation patterns. The following
tokens are used: tag is a valid XML identifier; <url> follows the w3c BNF grammar for
URLs is located at http://www.w3.org/Addressing/URL/5_BNF.html#z18.

4.1 Experiment Setup

To evaluate the performance of ACEBot at a Web-scale, we have carried out the evaluation of
our system in various settings. Here, first we describe the dataset and performance metrics and
different settings of our proposed algorithm.

Dataset We have selected 50 Web sites (totaling nearly 2 million Web pages) with diverse
characteristics, to analyze the behavior of our system for small Web sites as well as for Web-scale
extraction. The evaluation of ACEBot for different content domains is performed to examine its
behavior in various situations. We consider Web sites of type blogs, news, music, travel, and
books. We crawled 50 Web sites with both wget (for a full, exhaustive crawl), and our proposed
system. To compare the performance of ACEBot with AAH, 10 Web sites (nearly 0.5 million
Web pages) were crawled with both ACEBot and AAH.

Site map In offline phase, the site map of a given Web site is constructed either from the
whole mirrored Web site or from a smaller collection of randomly selected sample pages. The
mechanism for random (i.e., dynamic) selection of sample pages for a given entry point is
described in Section 3.2. We found that ACEBot requires a sample of 3,000 pages to achieve
optimal crawling quality, comparable to what was done for iRobot [5] (1,000 pages) and a
supervised structure driven crawler [23] (2,000 pages). We present in Figure 6 the variation
of performance of ACEBot (in term of number of crawled distinct n-grams) as the number of
sampled pages per site increases, shown averaged over 10 Web sites having each 50,000 total
number of pages. ACEBot achieves nearly 80% of the proportion of seen n-grams with 2,000
sample pages, though stable performance for different Web sites is achieved over 2,500 sample
pages. Since the sample pages are chosen randomly, and a set of navigation patterns learned
for several runs may vary, we have run ACEBot for each sample size (e.g., 500) 10 times, to
evaluate the performance over several run. For sample size 500, the more inconsistent navigation
patterns are selected. ACEBot has seen 6 times (consider the plot point label for size 500) the
same amount of distinct n-grams with size 500, whereas with size 3,000, every time the same
navigation patterns were selected. Clearly, site map construction with size 3,000 yields the best
result and performs consistently.

14

http://www.w3.org/Addressing/URL/5_BNF.html#z18

DRAFT500 1,000 1,500 2,000 2,500 3,000
20

40

60

80

100

6

6

7

9

10 10

Size of site map

Pr
op

or
tio

n
of

se
en

n-
gr

am
s

(%
)

Figure 6: Proportion of seen n-grams for 10 Web sites as the number of sample pages varies; plot
labels indicate the number of times, out of 10 runs on the same Web sites, the maximum
number of distinct n-grams was reached

Algorithm We will consider several settings for our proposed algorithm 1. The additional
parameters d, cr, k, ac, and a form several variants of our technique: The sitemap d may be
dynamic (limiting to 3,000 Web pages; default if not otherwise specified) or complete (whole
Web site mirror). The completion ration cr may take values 85%, 90%, 95% (default). The level
depth k is set to either 2, 3 (default), or 4. The continuity limit ac, that specifies whether to limit
repetition of navigation patterns to a fixed number (3, default) or consider arbitrary number of
repetitions, is a Boolean. Finally, the attributes used, a, may be set to id (default), class, or both.
Our system was tested for all these variants to evaluate the performance for different settings. We
describe next the results, that we found highly stable and consistent. Occasionally, we present
experiments for values of the parameters beyond the ones above-mentioned.

Performance Metrics We have compared the performance of ACEBot with AAH and GNU
wget, by evaluating the number of HTTP requests made by these crawlers vs the number of
useful content retrieved. We have considered the same performance metrics used by AAH [10],
where the evaluation of number of HTTP requests is performed by simply counting the requests.
Coverage of useful content is evaluated by comparing the proportion of 2-grams (sequences of two
consecutive words) in the crawl result of three systems, for every Web site, and by counting the
number of external links (i.e., hyperlinks to another domain) found in the three crawls. External
links are considered an important part of the content of a Web site.

4.2 Crawl Efficiency

We have computed the number of pages crawled with ACEBot, AAH, and GNU wget, to compare
the crawl efficiency of the three systems (see Figure 7). Here, wget obviously crawls 100% of the
dataset. ACEBot makes 5 times fewer requests than blind crawl, and slightly more than AAH,
the latter being only usable for the three CMS it handles. The performance of ACEBot remains
stable when we experimented with WordPress, vBulletin, phpBB, and with other template-based

15

DRAFTWordPressvBulletin phpBB other
0

10

20

30

Pr
op

or
tio

n
of

H
T

T
P

re
qu

es
ts

(%
)

ACE
AAH

Figure 7: Total number of HTTP requests used to crawl the dataset, in proportion to the total size
of the dataset, by type of Web site

Web sites. ACEBot exploits the link structure of a given Web site, and selects a set of navigation
patterns with high score (see Definition 4). Therefore, our approach is not much affected by noisy
links, invalid, and duplicates pages. Indeed, our approach avoids redundant requests for the same
Web content (e.g., access a blog post by different services: tag, year, author, print view). Since all
redundant pages have different navigation patterns, if one navigation pattern is selected then the
other navigation patterns (leading to the redundant pages) will have lower score and hence will
be automatically discarded.

The results shown in Figure 8 plot the number of seen 2-grams, and the number of HTTP
requests made for a selected number of navigation patterns. The number of HTTP requests and
discovered n-grams for a navigation pattern decide of its selection (a navigation pattern with
best score is selected). Therefore a navigation patterns with one single page, but with many new
n-grams may be selected ahead of a navigation pattern with many HTTP requests. Indeed, the
Figure 8 elaborates that prospect, where the 10th selected navigation pattern crawl a large number
of pages but this navigation pattern was selected only because it reached a higher completion
ratio. The higher completion ratio ensure that the optimal number of navigation patterns are
selected, including a navigation pattern with most (but important) number of HTTP requests.

4.3 Crawl Effectiveness

ACEBot crawling results in terms of coverage of useful content are summarized in Figures 9, 10,
11, and in Table 2.

Figure 9 illustrates the proportion of crawled n-grams by ACEBot for three possible combi-
nation of attributes id, and class with both complete (whole mirror of Web site) and dynamic
(randomly selected 3000 pages) site maps. The experiments depicts the importance of a specific
attribute by comparing the coverage of useful content. Figures 9a, 9b exhibit the results for a
complete site map, whereas Figures 9c, 9d show the effectiveness for a dynamic sitemap. Further,
a set of navigation patterns are learned by limiting (or not) the continuity constraints (for the
action of + type). The experiments has shown that the navigation patterns with attribute class
has less significance than id or when we consider the both attributes (i.e., id, and class). The
class attribute may have multiple values, and several css style may be given to a node. Therefore,
one has to consider that we ignore the multiple values for class attribute in navigation pattern
learning phase and just add a constraint [@class] for the node (e.g., /div [@class]). When we

16

DRAFT0 2 4 6 8 10 12
0

2

4

6

8

10

Number of selected navigation patterns

N
um

be
ro

fH
T

T
P

re
qu

es
ts

(×
1,

00
0)

requests
0

20

40

60

80

100

Pr
op

or
tio

n
of

se
en

2-
gr

am
s

(%
)

2-grams

Figure 8: Number of HTTP requests and proportion of seen n-grams for 10 Web sites as the
number of selected navigation patterns increase

consider both attributes for learning the navigation patterns, the performance is more stable, but
importantly, the learned navigation may work for the specific Web site and may lack the coverage
of useful content when executed for similar kinds of Web sites. The id attribute has achieved
a similar result, except for few cases, when higher coverage was achieved with both attributes.
Also, it is to be expected that selected navigation patterns comprising just id attributes may show
better performance for reuse in similar Web sites. ACEBot has achieved over 96% (median)
effectiveness with both complete and dynamic sitemaps and whether (or not) the continuity action
is restricted. The results are also very stable with very low variance: the worst coverage score
for our whole dataset is 96% for complete site map and over 95% for dynamic site map with
both attributes. Moreover, the restriction on action continuity does not effect the performance.
This indeed show the statistical significance of our results, and the appropriateness of limiting the
continuity action to 3 repetitions.

The proportion of coverage of useful content and external links for different navigation steps
(level) is shown in Table 2. Limiting navigation patterns to level 2 or 3 results in less HTTP
requests, and a performance of 96% content with 95% completion ratio. But the level 3 performs
better across many Web sites in terms of effectiveness, as important content exist till link depth 3.
Once the learned navigation patterns achieve the 95% coverage of n-grams vs whole blind crawl,
the selected navigation patterns will be stored in a knowledge base for future re-crawling.

Figure 10 evaluate the performance of ACEBot for different completion ratio for 10 selected
Web site, each with 50,000 Web pages. The selection of a set of navigation patterns ends when
the completion ratio has been achieved. The experiments have shown that the higher (and stable)
proportion of n-grams are seen with completion ratio over 80%.

The proportion of external links coverage by ACEBot is given in Table 2. Since ACEBot
selects the best navigation patterns and achieves higher content coverage, over 99% external links
are present in the content crawled by ACEBot for the whole dataset.

17

DRAFTid class id&class
94

95

96

97
Pr

op
or

tio
n

of
se

en
n-

gr
am

s
(%

)

(a) Complete sitemap (with no restriction on + ac-
tions).

id class id&class

95

96

97

Pr
op

or
tio

n
of

se
en

n-
gr

am
s

(%
)

(b) Complete sitemap (with restriction on +).

id class id&class

94

95

96

97

Pr
op

or
tio

n
of

se
en

n-
gr

am
s

(%
)

(c) Dynamic sitemap (with no restriction on +).

id class id&class

94

95

96

97

Pr
op

or
tio

n
of

se
en

n-
gr

am
s

(%
)

(d) Dynamic sitemap (with restriction on +).

Figure 9: Box chart of the proportion of seen n-grams in the whole dataset for different settings:
minimum and maximum values (whiskers), first and third quartiles (box), median
(horizontal rule)

4.4 Comparison to AAH

To reach a better understanding of the performance of ACEBot, we plot in Figure 11, the number
of distinct 2-grams seen by ACEBot, AAH, and wget during one crawl, as the number of requests
increase. Clearly, AAH [10], and ACEBot directly crawl the interesting content of the Web site
and newly discovered 2-grams grow linearly with number of requests made. The results show
the performance of automatic structure-based crawler (ACEBot) as close to the semi-automatic
crawler (AAH). ACEBot makes 2,448 requests to crawl 97% of 2-grams coverage, as compared
to 92% content coverage with 2,200 requests by AAH. Since AAH is based on hand-written
knowledge base, the engineer may miss to specify the navigation patterns to crawl other important
content (e.g., interview pages in the case at hand). This indeed illustrates that an automatic
approach not only crawls important pages, but also ensure that all portion of Web site has
considered.

The experiments of AAH [10] are performed for 100 Web sites (nearly 3.3 million Web pages).
To compare ACEBot to AAH more globally, we have crawled 10 of the same Web sites (nearly
0.5 million Web pages) used in AAH [10]. ACEBot is fully automatic, whereas the AAH has
introduces a semi-automatic approach (still domain dependent) and thus requires a hand-written
knowledge base (XML format) to initiate a bulk downloading of known Web application. Over
96 percent crawl effectiveness in terms of 2-grams, and over 99 percent in terms of external links

18

DRAFT0 20 40 60 80 100
0

20

40

60

80

100

Completion ratio (%)

Pr
op

or
tio

n
of

se
en

n-
gr

am
s

(%
)

Figure 10: Proportion of seen n-grams for different completion ratios for 10 Web sites

0 2,000 4,000 6,000
0

100

200

300

Number of HTTP requests

N
um

be
ro

fd
is

tin
ct

2-
gr

am
s

(×
1,

00
0)

ACE
AAH
wget

Figure 11: Crawling http://www.rockamring-blog.de/

19

http://www.rockamring-blog.de/

DRAFT
Level Requests Content (%) External Links (%) Completion ratio (%)

2
376632 95.7 98.6 85
377147 95.8 98.7 90
394235 96.0 99.1 95

3
418654 96.3 99.2 85
431572 96.6 99.3 90
458547 96.8 99.3 95

4
491568 96.9 99.4 85
532358 97.1 99.4 90
588512 97.2 99.4 95

Table 2: Performance of ACEBot for different levels with dynamic sitemap (restriction on +) for
the whole data set (2 million pages)

is achieved for ACEBot, as compared to over 99 percent content completeness (in terms of both
2-grams and external links) for AAH for the same Web sites. The lower content retrieval for
ACEBot than for AAH is naturally explained by the 95% target completion ration considered for
ACEBot. However it is also important to note that the performance of AAH relies on the hand
written crawling strategy described in knowledge base by a crawl engineer. The crawl engineer
must be fully aware to the Web pages structure (as well as the link organization) for the crawled
Web site, to effectively download the important portion, as contrasted to our fully automatic
approach, where one does not need to know such information for effective downloading and
automatically learn the important portion of Web site. The current approach makes 5 times fewer
HTTP requests as compared to 7 times for AAH (See Figure 7). Indeed the current effort crawls
more pages than the AAH, but is fully unsupervised.

4.5 Comparison to iRobot

We have performed the comparison of our approach with the iRobot system [5]. iRobot is not
available for testing because of intellectual property reasons. The experiments of [5] are performed
just for 50,000 Web pages, over 10 different forum Web sites (to compare with our evaluation, on
2.0 million Web pages, over 50 different Web sites). To compare ACEBot to iRobot, we have
crawled one of the same Web forum used in [5]: http://www.tripadvisor.com/ForumHome
(over 50,000 Web pages). The completeness of content of the our system is nearly 97 percent in
terms of 2-grams, and 100 percent in terms of external links coverage; iRobot has a coverage
of valuable content (as evaluated by a human being) of 93 percent on the same Web site. The
crawl efficiency (in terms of number of HTTP requests) for iRobot is claimed in [5] to be 1.73
times less than a regular Web crawler; on the http://www.tripadvisor.com/ForumHome Web
application, ACEBot makes 5 times fewer requests than wget does.

20

http://www.tripadvisor.com/ForumHome
http://www.tripadvisor.com/ForumHome

DRAFT
5 Related work

Several approaches have been proposed in the literature to implement an efficient system for Web
crawling, we review them here. Note that we do not discuss here focused crawling [6], which is
the different goal of crawling with respect to a given topic or intent, see [10] for a comparison
between focused crawling and efficient crawling of Web applications.

In [16], Liu et al. proposed an algorithm, called SEW, that models a Web site as a hypertext
structure. The skeleton is organized in a hierarchical manner, with nodes either navigation
pages or content pages. The navigation pages contain links to the content pages, whereas the
content pages provide the information content. SEW relies on a combination of several domain-
independent heuristics to identify the most important links within a Web page and thus discover a
hierarchical organization of navigation and content pages. Kao et al. [13] have addressed a similar
problem, and they propose a technique to distinguish between pages containing links to news
posts and the pages containing these news. Their proposed method eliminates the redundancy
of hypertext structure using entropy-based analysis; similarly a companion algorithm is used to
discard redundant information. Compared to our approach, the both techniques above only cluster
the Web pages into two predefined classes of pages: navigational and content pages. In addition,
Kao et al. [13] focus on pages of a specific domain (news). In contrast, we have proposed a
system that performs unsupervised crawling of Web sites (domain independent). Our system
may have several classes and, indeed, the crawler will follow the best traversal path to crawl
the content-rich area. In addition, our approach does not make any prior assumption about the
number of classes.

In [7, 8, 2], a similar version to our model has been adopted. [7, 8] aim to cluster Web pages
into different classes by exploiting their structural similarity at the DOM tree level, while [2]
introduces crawling programs: a tool (implemented as a Firefox plugin) that listen to the user
interaction, registers steps, and infers the corresponding intentional navigation. A user is just
required to browse the Web site towards a page of interest of a target class. This approach
is semi-supervised as it requires human interaction to learn navigation patterns to reach the
content-rich pages. A Web crawler is generally intended in a massive crawling scenario, and thus
semi-automatic approaches would require a lot of human interaction for each seed Web site, not
feasible in our setting. Therefore, in our proposed approach, we have introduced the offline phase
which learns navigation patterns (that leads to content-rich pages) in an unsupervised manner and
hence will have better Web-scale performance.

Another structure-driven approach [23, 22], has proposed a Web crawler, named GoGetIt! [22]
that requires minimum human effort. It takes a sample page (page of interest) and entry point as
input and generates a set of navigation patterns (i.e., sequence of patterns) that guides a crawler
to reach Web pages structurally similar to the sample page. As stated above, this approach is also
focused on a specific type of Web page, whereas our approach performs massive crawling at Web
scale for content-rich pages. Similarly, [14] presents a recipe crawler (domain dependent) that
uses certain features to retrieve the recipe pages.

Several domain-dependent Web forum crawling techniques [12, 5, 15] have been proposed
recently. In [12], the crawler first clusters the Web pages into two groups from a set of manual
annotated pages using Support Vector Machines with some predefined features, and then, within
each cluster, URLs are clustered using partial tree alignment. Further a set of ITF (index-thread-

21

DRAFT
page-flipping) regexes are generated to launch a bulk download of a target Web forum. The
iRobot system [5], that we use as a baseline in our experiments, creates a sitemap of the Web
site being crawled. The sitemap is constructed by randomly crawling a few Web pages from
a given Web site. After sitemap generation, iRobot obtains the structure of the Web forum.
The skeleton is obtained in the form of a directed graph consisting of vertices (Web pages) and
directed arcs (links between different Web pages). Furthermore, a path analysis is performed to
learn an optimal traversal path which leads the extraction process in order to avoid duplicate and
invalid page. A lightweight algorithm [15] performs content based features to cluster the links for
an automatic crawling of Web forums. This approach first identify the signature and common
keywords for the reference links on the forum posts. Then it finds XPath expressions for each
content page and content regions within it. An extraction phase is introduced to fetch the actual
content. This approach also does not perform on Web scale but restricted to specific Web forums.

A Web scale approach [3] has introduced an algorithm that performs URL-based clustering
of Web pages using some content features. However, in practice, URL-based clustering of Web
pages is less reliable in the presence of dynamic nature of Web. Our previous work [10] proposes
an adaptive application-aware helper (AAH) that crawl known Web sites efficiently. AAH is
assisted with a knowledge base (specifies the Web sites detection parameters and relevant crawling
actions) that guides the crawling process. It first tries to detect the Web site and, if a Web site is
detected as a known one, attempts to identify the kind of Web page given the matched Web site.
Once the kind of Web page has been matched, the relevant crawling actions are executed for Web
archiving. This approach achieves the highest quality of Web content with fewer HTTP requests,
but is not fully automatic and requires a hand-written knowledge base that prevents crawling of
unknown Web sites. The AAH is part of the ARCOMEM crawling architecture [20], where the
purpose of this module is to make a large-scale crawler aware of the type of Web site currently
processed, refines the list of URLs to process, and extracts structured information from crawled
Web pages.

6 Conclusions

In this paper, we have introduced an Adaptive Crawler Bot for data Extraction (ACEBot), that
utilizes the inner structure of Web pages, rather than their content or URL-based clustering
techniques, to determine which pages are important to crawl. Extensive experiments over a large
dataset has shown that our proposed system performs well for Web sites that are data-intensive
and, at the same time, present regular structure. We have compared the performance of ACEBot
with generic crawler GNU wget, AAH, and iRobot. Our system significantly reduces duplicate,
noisy links, and invalid pages without compromising on coverage of useful content, achieving
high crawl quality as well. ACEBot only require 3,000 sample pages to construct a site map.
Compared with generic crawler, ACEBot makes 5 times fewer HTTP requests, slightly more
than AAH (but AAH only handle three CMSs and also require hand-written knowledge base).
ACEBot has also outperformed iRobot, that achieves 93% crawl effectiveness, compared to 97%
in terms of useful content and 100% in terms of external links with ACEBot.

22

DRAFT
References

[1] J. Alpert and N. Hajaj. We knew the web was big... http://googleblog.blogspot.co.
uk/2008/07/we-knew-web-was-big.html, 2008.

[2] C. Bertoli, V. Crescenzi, and P. Merialdo. Crawling programs for wrapper-based applications.
In IRI, 2008.

[3] L. Blanco, N. N. Dalvi, and A. Machanavajjhala. Highly efficient algorithms for structural
clustering of large websites. In WWW, 2011.

[4] G. Brumfiel. The first web page, amazingly, is lost. http://www.npr.org/2013/05/22/
185788651/the-first-web-page-amazingly-is-lost, 2013.

[5] R. Cai, J.-M. Yang, W. Lai, Y. Wang, and L. Zhang. iRobot: An intelligent crawler for Web
forums. In WWW, 2008.

[6] S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to
topic-specific Web resource discovery. In WWW, 1999.

[7] V. Crescenzi, P. Merialdo, and P. Missier. Fine-grain Web site structure discovery. In WIDM,
2003.

[8] V. Crescenzi, P. Merialdo, and P. Missier. Clustering Web pages based on their structure.
Data Knowl. Eng., 54(3):279–299, 2005.

[9] M. de Kunder. The indexed Web. http://www.worldwidewebsize.com/, 2013.

[10] M. Faheem and P. Senellart. Intelligent and adaptive crawling of Web applications for Web
archiving. In Proc. ICWE, 2013.

[11] D. Gibson, K. Punera, and A. Tomkins. The volume and evolution of Web page templates.
In WWW, 2005.

[12] J. Jiang, X. Song, N. Yu, and C.-Y. Lin. Focus: Learning to crawl Web forums. IEEE Trans.
Knowl. Data Eng., 2013.

[13] H.-Y. Kao, S.-H. Lin, J.-M. Ho, and M.-S. Chen. Moining Web informative structures and
contents based on entropy analysis. IEEE Trans. Knowl. Data Eng., 2004.

[14] Y. Li, X. Meng, L. Wang, and Q. Li. RecipeCrawler: Collecting recipe data from WWW
incrementally. In Advances in Web-Age Information Management. Springer, 2006.

[15] W.-Y. Lim, A. Sachan, and V. L. L. Thing. A lightweight algorithm for automated forum
information processing. In Web Intelligence, 2013.

[16] Z. Liu, W. K. Ng, and E.-P. Lim. An automated algorithm for extracting Website skeleton.
In DASFAA, 2004.

[17] J. Masanès. Web archiving. Springer, 2006.

23

http://googleblog.blogspot.co.uk/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.co.uk/2008/07/we-knew-web-was-big.html
http://www.npr.org/2013/05/22/185788651/the-first-web-page-amazingly-is-lost
http://www.npr.org/2013/05/22/185788651/the-first-web-page-amazingly-is-lost
http://www.worldwidewebsize.com/

DRAFT
[18] F. Menczer, G. Pant, P. Srinivasan, and M. E. Ruiz. Evaluating topic-driven web crawlers.

In SIGIR, 2001.

[19] X. Ochoa and E. Duval. Quantitative analysis of user-generated content on the Web. In
WebEvolve, 2008.

[20] V. Plachouras, F. Carpentier, M. Faheem, J. Masanés, T. Risse, P. Senellart, P. Siehndel, and
Y. Stavrakas. ARCOMEM crawling architecture. Future Internet, 6, 2014.

[21] A. Sellers, T. Furche, G. Gottlob, G. Grasso, and C. Schallhart. Exploring the Web with
OXPath. In LWDM, 2011.

[22] M. L. A. Vidal, A. S. da Silva, E. S. de Moura, and J. M. B. Cavalcanti. GoGetIt!: a tool for
generating structure-driven Web crawlers. In WWW, 2006.

[23] M. L. A. Vidal, A. S. da Silva, E. S. de Moura, and J. M. B. Cavalcanti. Structure-driven
crawler generation by example. In SIGIR, 2006.

[24] W3C. Document Object Model (DOM) Level 1 specification, W3C Recommendation.
http://www.w3.org/TR/REC-DOM-Level-1, 1998.

24

http://www.w3.org/TR/REC-DOM-Level-1

	Introduction
	Model
	Formal Definitions
	Model generation

	Deriving the Crawling Strategy
	Simple Example
	Detailed Description

	Experiments
	Experiment Setup
	Crawl Efficiency
	Crawl Effectiveness
	Comparison to AAH
	Comparison to iRobot

	Related work
	Conclusions

