
Submitted to Future Internet. Pages 1 - 24.
OPEN ACCESS

future internet
ISSN 1999-5903

www.mdpi.com/journal/future internet

Article

ARCOMEM Crawling Architecture
Vassilis Plachouras 1,*, Florent Carpentier 2, Muhammad Faheem 3, Julien Masanès 2,
Thomas Risse 4, Pierre Senellart 3, Patrick Siehndel 4, Yannis Stavrakas 1

1 Institute for the Management of Information Systems, ATHENA Research and Innovation Center,
Artemidos 6 & Epidavrou, Maroussi 15125, Greece

2 Internet Memory Foundation, 45 ter rue de la Révolution, 93100 Montreuil, France
3 CNRS LTCI, Institut Mines-Télécom, Télécom ParisTech, 46 rue Barrault, 75634 Paris Cedex 13,

France
4 L3S Research Center, University of Hannover, Appelstr. 9a, 30167 Hannover, Germany

* Author to whom correspondence should be addressed; vplachouras@acm.org, Tel. +302106875413,
Fax +302106856804.

Version July 31, 2014 submitted to FutureInternet. Typeset by LATEX using class file mdpi.cls

Abstract: The World Wide Web is the largest information repository available today.1

However, this information is very volatile and Web archiving is essential to preserve it for the2

future. Existing approaches to Web archiving are based on simple definitions of the scope3

of Web pages to crawl and are limited to basic interactions with Web servers. The aim of4

the ARCOMEM project is to overcome these limitations and to provide flexible, adaptive5

and intelligent content acquisition, relying on social media to create topical Web archives.6

In this article, we focus on ARCOMEM’s crawling architecture. We introduce the overall7

architecture and we describe its modules, such as the online analysis module which computes8

a priority for the Web pages to be crawled, and the Application-Aware Helper which takes9

into account the type of Web sites and applications to extract structure from crawled content.10

We also describe a large-scale distributed crawler that has been developed, as well as the11

modifications we have implemented to adapt Heritrix, an open source crawler, to the needs12

of the project. Our experimental results from real crawls show that ARCOMEM’s crawling13

architecture is effective in acquiring focused information about a topic and leveraging the14

information from social media.15

Keywords: Web archiving; crawling architecture; content acquisition16

Version July 31, 2014 submitted to Future Internet 2 of 24

Figure 1. Traditional processing chain of a Web crawler

Queue
Management

Page
Fetching

Link
Extraction

URL
Selection

1. Introduction17

The World Wide Web is the largest information repository. But this information is very volatile: the18

typical half-life of content referenced by URLs is of a few years [1]; this trend is even aggravated in19

social media, where social networking APIs sometimes only extend to a week’s worth of content [2].20

Web archiving [3] deals with the collection, enrichment, curation, and preservation of today’s volatile21

Web content in an archive that remains accessible to tomorrow’s historians. Different strategies for Web22

archiving exist: bulk harvesting, selective harvesting and combinations of both. Bulk harvesting aims at23

capturing snapshots of entire domains. In contrast selective harvesting is much more focused, e.g., on24

an event or a person. Combined strategies include less frequent domain snapshots complemented with25

regular selective crawls. In the following we will focus on the technical aspects of selective crawls.26

Selective crawls require a lot of manual work for the crawl preparation, crawler control, and quality27

assurance. On the technical level, current-day archiving crawlers, such as Internet Archive’s Heritrix [4],28

crawl the Web in a conceptually simple manner (See Figure 1). They start from a seed list of URLs29

(typically provided by a Web archivist) to be stored in a queue. Web pages are then fetched from this30

queue one after the other, stored as is in the archive, and further links are extracted from them. If newly31

extracted links point to URLs that are in the scope of archiving tasks (usually given by a list or regular32

expressions of URLs to consider), they are added to the queue. This process ends after a specified time33

or when there is no interesting URL left to crawl. Due to this simple way of crawling, bulk domain34

crawls are well supported while selective crawls necessitate additional manual work for the preparation35

and quality assurance. It is the aim of the ARCOMEM1 project to support the selective crawling on the36

technical level by leveraging social media and semantics to build meaningful Web archives [5]. This37

requires, in particular, a change of paradigm in how content is collected technically via Web crawling,38

which is the topic of the present article.39

This traditional processing chain of a Web crawler like Heritrix [4] has several major limitations:40

• Only regular Web pages, accessible through hyperlinks and downloadable with an HTTP GET41

request, are ever candidates for inclusion in the archive; this excludes other forms of valuable42

Web information, such as that accessible through Web forms, social networking RESTful APIs, or43

AJAX applications.44

• Web pages are stored as is in the archive, and the granularity of the archive is that of a Web page.45

Modern Web applications, however, often present individual blocks of information on different46

1 http://www.arcomem.eu/

http://www.arcomem.eu/

Version July 31, 2014 submitted to Future Internet 3 of 24

parts of a Web page: think of the messages on a Web forum, or the different news items on a news47

site. These individual Web objects can be of independent interest to archive users.48

• The crawling process does not vary from one site to another. The crawler is blind to the kind of Web49

application hosted by this Web site, or to the software (typically, a content management system)50

that powers this Web application. This behavior might lead to resource loss in crawling irrelevant51

information (e.g., login page, edition page in a wiki system) and prevents any optimization of the52

crawling strategy within a Web site based on how the Web site is structured.53

• The scope of a selective crawl is defined by a crude whitelist and blacklist of URL patterns; there54

is no way to specify that relevant pages are those that are related to a given semantic entity (say, a55

person) or that are heavily referenced from influential users in social networks.56

• The notion of scope is binary: either a Web page is in the scope or it is not – on the other hand, it57

is very natural for a Web archivist to consider various degrees of relevance for different pieces of58

Web content; and ideally content should be crawled by decreasing degree of relevance.59

The crawling architecture of ARCOMEM aims at solving these different issues by providing flexible,60

adaptive, intelligent content acquisition. This is achieved by interfacing traditional Web crawlers such61

as Heritrix with additional modules (complex resource fetching, Web-application-aware extraction and62

crawling, online and offline analysis of content, prioritization), as well as by adapting the internals of63

the crawlers when needed (typically for managing priorities of content relevance). The objective of this64

article is to present an overview of this crawling architecture, and of its performance (both in terms of65

efficiency and of quality of the archive obtained) on real-Web crawls. This article extends [6].66

The remainder of this work is organized as follows. We first discuss in Section 2 the related work.67

Then we present in Section 3 a high-level view of the ARCOMEM architecture, before reviewing68

individual modules in Section 4. We present evaluation results that highlight the effectiveness of69

ARCOMEM’s crawling architecture in Section 5. Finally, we present our concluding remarks in70

Section 6.71

2. Related Work72

While crawling appears to be a simple process, there are several associated challenges, especially73

when the aim is to crawl a large number of Web pages [7], in order to create the index of a Web search74

engine, or to archive them for future reference.75

Web Crawling. Descriptions of early versions of Google’s and Internet Archive’s large-scale crawler76

systems appeared in [8] and [9], respectively. However, one of the first detailed descriptions of a77

scalable Web crawler is that of Mercator by Heydon and Najork [10], who provide information on the78

various modules of the crawler and the design options. Najork and Heydon also describe a distributed79

crawler based on Mercator in [11]. Shkapenyuk and Suel [12] introduce a distributed and robust crawler,80

managing the failure of individual servers. Heritrix [13] is an archival-quality and modular open source81

crawler, developed at the Internet Archive. In Section 4.4 we will describe how we have adapted Heritrix82

Version July 31, 2014 submitted to Future Internet 4 of 24

in order to fit in ARCOMEM’s crawling architecture. Boldi et al. [14] describe UBICrawler, a distributed83

Web crawler, implemented in Java, which operates in a decentralized way and uses consistent hashing84

to partition the domains to crawl across the crawling servers. Lee et al. [15] describe the architecture85

and main data structures of IRLBot, a crawler which implements DRUM (Disk Repository with Update86

Management) for checking whether a URL has been seen previously. The use of DRUM allows IRLBot87

to maintain a high crawling rate, even after crawling billions of Web pages.88

As the Web evolves, and Web pages are created, modified, or deleted [16][17], effective crawling89

approaches are needed to handle these changes. Cho and Garcia Molina [18] describe an incremental90

crawler for optimizing the average freshness of crawled Web data. Olston and Pandey [19] describe91

re-crawling strategies to optimize freshness based on the longevity of information on Web pages. Pandey92

and Olston [20] also introduce a parameterized algorithm for monitoring Web resources for updates and93

optimizing timeliness or completeness depending on application-specific requirements.94

Focused and Deep-Web Crawling. Focused or topical crawlers [21] provide an effective way to95

balance the cost, coverage, and quality aspects of data collection from the Web [22], by selectively96

crawling pages that are relevant to a set of topics, defined as a set of keywords [23], by example97

documents mapped to a taxonomy of topics [24], or by ontologies [25][26]. Recent approaches also98

address the crawling of information for specific geographical locations [27][28].99

The main challenges in focused crawling relate to the prioritization of URLs not yet visited, which100

may be based on similarity measures [23][25], hyperlink distance-based limits [29][30], or combinations101

of text and hyperlink analysis with Latent Semantic Indexing (LSI) [31]. Machine learning approaches,102

including naïve Bayes classifiers [24][32], Hidden Markov Models [33], reinforcement learning [34],103

genetic algorithms [35], and neural networks [36], have also been applied to prioritize the unvisited104

URLs.105

Focused crawlers and crawlers in general can harvest data from the publicly indexable Web by106

following hyperlinks between Web pages. However, there is a very large part of the Web that is hidden107

behind HTML forms [37]. Such forms are easy to complete by human users. Automatic deep-Web108

crawlers, however, need to complete HTML forms and retrieve results from the underlying databases.109

Barbosa and Freire [38] develop mechanisms for generating simple keyword queries that cover the110

underlying database through unstructured simple search forms. Madhavan et al. [39] handle structured111

forms by automatically completing subsets of fields, aiming to obtain small coverage over many hidden112

Web databases.113

Web Archiving. Web archiving refers to the collection and long-term preservation of data available114

on the Web [3]. Since archiving the whole Web is a very challenging task due to its size and dynamics,115

there have been several national initiatives for preserving the Web of a country, based on full crawls in116

Sweden [40] and on a selective collection of Web pages in the United Kingdom [41] and Australia [42].117

The former approach aims at providing complete snapshots of a domain taken at regular intervals. A118

drawback of this approach is the lack of knowledge about changes of Web pages between crawls and the119

consistency of the collected data [43]. The latter approach results in higher quality collections restricted120

only to selected Web sites. Denev et al [44] introduce a framework for assessing the quality of archives121

Version July 31, 2014 submitted to Future Internet 5 of 24

and tune the crawling strategies to optimize quality with given resources. Gomes et al. [45] provide a122

survey of Web archiving initiatives.123

Focused crawlers, as described above, can be used for creating focused Web archives, by relying on124

a selective content acquisition approach. The crawling process in the ARCOMEM architecture changes125

the paradigm in how content is collected technically via Web crawling, by performing selective crawls126

and also leveraging information found in online social media.127

3. Crawling Architecture128

The goal for the development of the ARCOMEM crawler architecture was to implement a socially129

aware and semantic-driven preservation model [5]. This requires thorough analysis of the crawled Web130

page and its components. These components of a Web page are called Web objects and can be the title,131

a paragraph, an image, or a video. Since a thorough analysis of all Web objects is time-consuming, the132

traditional way of Web crawling and archiving is no longer functioning. Therefore the ARCOMEM133

crawl principle is to start with a semantically enhanced crawl specification that extends traditional134

URL-based seed lists with semantic information about entities, topics or events. This crawl specification135

is complemented by a small reference crawl to learn more about the crawl topic and intention of the136

archivist. The combination of the original crawl specification with the extracted information from137

the reference crawl is called the Intelligent Crawl Definition (ICD). This specification, together with138

relatively simple semantic and social signals, is used to guide a broad crawl that is followed by a thorough139

analysis of the crawled content. Based on this analysis a semi-automatic selection of the content for the140

final archive is carried out.141

The translation of these steps into the ARCOMEM crawling architecture foresees the following142

processing levels: the crawler level, the online processing level, the offline processing level, and the143

cross-crawl analysis that revolve around the ARCOMEM database as depicted in Figure 2. Since the144

focus of this article is the crawling and the online analysis we will focus on these levels in the rest of the145

article and give only a brief overview on the other levels. More details about the other processing levels146

and the whole architecture can be found in [5].147

3.1. Crawling Level148

At this level, the system decides and fetches the relevant Web objects as these are initially defined149

by the archivists, and are later refined by both the archivists and the online processing modules. The150

crawling level includes, besides the traditional crawler and its decision modules, some important data151

cleaning, annotation, and extraction steps (we explain this in more detail in Section 4). The Web152

objects (i.e., the important data objects existing in a page, excluding ads, code, etc.) are stored in the153

ARCOMEM database together with the raw downloaded content.154

3.2. Online Processing Level155

The online processing is tightly connected with the crawling level. At this level a number of156

semantic and social signals such as information about persons, locations, or social structure taken157

Version July 31, 2014 submitted to Future Internet 6 of 24

Figure 2. Overall Architecture

Crawler

Cross Crawl Analysis

Online
Processing

Offline
Processing

Queue
Management

Application-Aware
Helper

Resource Selection
& Prioritization

Resource
Fetching

Intelligent
Crawl

Definition

Consolidation
Enrichment

GATE Offline Analysis

Social Web Analysis

GATE Online Analysis Social Web Analysis

Named Entity
Evol. Recog.

Extracted
SocialWeb
Information

Crawler
Cockpit

ARCOMEM
Storage

URLs

Relevance Analysis
&

Priorization

Image/Video Analysis

Twitter
Dynamics

WARC Export

WARC
Files

Applications
Broadcaster
Application

Parliament
Application

Version July 31, 2014 submitted to Future Internet 7 of 24

from the intelligent crawl specification are used to prioritize the crawler processing queue. Due to158

the near-real-time requirements, only time-efficient analysis can be performed, while complex analysis159

tasks are moved to the offline phase. The logical separation between the online processing level and160

the crawler level will allow the extension of existing crawlers at least with some functionalities of the161

ARCOMEM technology. More details about the online analysis can be found in Section 4.2.162

3.3. Offline Processing Level163

At this level, most of the basic processing over the data takes place. The offline, fully-featured,164

versions of the entity, topics, opinions, and events analysis (ETOE analysis) and the analysis of the social165

contents operate over the cleansed data from the crawl that are stored in the ARCOMEM database. These166

processing tools perform linguistic, machine learning and NLP methods in order to provide a rich set167

of metadata annotations that are interlinked with the original data. In addition to processing of textual168

content, multimedia content can also be analyzed and enriched with meta-information. The respective169

annotations are stored back in the ARCOMEM database and are available for further processing and170

information mining. After all the relevant processing has taken place, the Web pages to be archived and171

preserved are selected in a semi-automatic way and transferred to the Web archive (in the form of WARC172

files).173

3.4. Cross-Crawl Analysis Level174

Finally, a more advanced processing step takes places. It operates on collections of Web objects that175

have been collected over time and can cover several crawls. Analysis implemented exemplary on this176

level within the ARCOMEM system is used to recognize Named Entity Evolutions [46] and to analyze177

the evolutions of associations between interesting terms and tweets (Twitter Dynamics) [47].178

3.5. Applications179

For the interaction with the crawler and exploration of the content a number of applications are used180

around the ARCOMEM core system. The crawler cockpit is used to create the crawl specification, to181

monitor the crawl activities, and to initiate the final export of crawled content to WARC files.182

The end-user applications allow users to search archives by domain, time, and keywords.183

Furthermore, browsing the archives via different facets such as topics, events, and entities, and184

visualizing the sentiments of Social Web postings complement the end-user application. However, the185

applications are not limited to the described examples. The ARCOMEM system is open to any kind of186

application that wants to use it.187

Version July 31, 2014 submitted to Future Internet 8 of 24

4. Module description188

The modular crawling architecture introduced in Section 3 enables the integration of a wide range of189

functionalities and technologies in the same system. In this section, we describe in detail the Application-190

Aware Helper, the online analysis module, as well as the two crawlers that can be used to acquire content.191

4.1. Application-Aware Helper192

The goal of the application-aware helper (AAH) is to make the crawler aware of the particular kind193

of Web application it is crawling, in order to adapt the crawling strategy accordingly. The presence of194

the AAH in the crawling processing chain ensures Web content is crawled in an intelligent and adaptive195

manner.196

The AAH applies different crawling strategies for different types of social Web sites (Web forums,197

blogs, social networks, photo networks, music networks, video networks, etc.), or for specific content198

management system (vBulletin, WordPress, etc.). The AAH detects the Web application and Web page199

type within the Web application before deciding which crawling strategy is best for the given Web200

application.201

More precisely, this module performs the following steps:202

1. it detects the Web application type (general type, content management system, etc.);203

2. it detects the Web page type (e.g., in a Web forum, if we are at the level of a list of forums, a list204

of threads, or a list of messages);205

3. it executes the relevant crawling actions; extracting Web objects (e.g., comments, posts) on the206

one hand, and adding only relevant URLs to the crawlers’ queue on the other hand.207

The AAH is assisted by a knowledge base, which specifies how to detect a specific Web application208

and which crawling actions should be applied. The knowledge base is written in a custom XML format,209

so as to be easily shared, updated, and hopefully managed by non-programmers. The knowledge base210

ensures that an appropriate crawling strategy is applied for a detected Web application. For instance,211

the vBulletin Web forum CMS can be identified by searching for a reference to a specific script with212

the detection pattern: script [contains(@src,’vbulletin_core.js’)]. The AAH distinguishes213

two main kinds of Web application levels: intermediate pages, such as lists of forums, lists of threads,214

can only be associated with navigation actions; terminal pages, such as the individual posts in a forum215

thread, can be associated with both navigation and extraction actions. For intelligent crawling, our216

AAH needs not only to distinguish among Web application types, but among the different kinds of217

Web pages that can be produced by a given Web application type. For example, the expression // h2218

[@class="forumtitle"]/a/@href detects intermediate pages in vBulletin, whereas the expression219

// table [@class="post"] identifies terminal pages. Once the application type and level is detected,220

the system executes the relevant crawling actions. The crawling actions are of two types: extraction221

actions point to the individual Web objects to be extracted from a given Web page (e.g., comments, blog222

post); navigation actions point to the URLs to be added in a crawling queue. For instance, the extraction223

action // div [contains(@id,’post_message’)] extracts the post message.224

Version July 31, 2014 submitted to Future Internet 9 of 24

To exploit the AAH in Web-scale crawling, a Web application adaptation module has been integrated.225

The AAH deals with both Web content changes and Web structure changes. When Web content changes,226

the AAH simply updates recently crawled versions with the new one. However, the Web structure227

changes (i.e., changes in Web site template) are more complicated to identify and adapt to. The AAH228

deals with this challenge. Structural changes with respect to the knowledge base come from varying229

versions of the CMS, or alternative templates proposed by CMSs or developed for a specific Web230

application. Here, we assume that Web application detection patterns never fail. In our experiments,231

we did not see any instance where a Web application was not successfully detected.232

The AAH deals with two different cases of structure adaptation: first, when (part of) a Web application233

has been crawled before, but recrawl of Web application fails after template changes; second, when a new234

Web application has been detected successfully, but (some of) the existing actions are inapplicable. The235

adaptation module for recrawls of Web application relearns appropriate crawling actions for each failed236

crawlable object. In ARCOMEM, crawled Web pages with their Web objects and metadata are stored237

in the form of RDF triples in the ARCOMEM database. Therefore, we have proposed an algorithm238

which utilizes the ARCOMEM database and first detects structural changes for already crawled Web239

applications by looking for the crawled content in the Web pages with crawling actions used during a240

previous crawl. If the system fails to extract the content, then it means that the structure of the Web241

application has changed. In the presence of structural changes, the algorithm detects the inappropriate242

crawling actions and performs updates by aligning them according to structural changes.243

In the case of a new Web application whose template is slightly different from the one present in244

the knowledge base, the adaptation module cannot be applied on previously crawled content. Here, the245

adaption is applied for two different scenarios: Web application level detected and Web application not246

detected. We consider two classes of Web application levels: intermediate and terminal. The navigation247

actions are applicable for the intermediate level (e.g., list of blog posts), whereas the terminal level248

may require both navigation and extraction actions (e.g., individual post). When a Web application249

level is detected, but (some) crawling actions fail, a set of relaxed expressions are generated by relaxing250

predicates, and tag names. The candidate tag names are selected from the knowledge base as well as251

from the existing page DOM tree. For example, if an expression div [contains(@class,’post’)]//252

h2[@class=’posttitle’] fails to extract the post title, and div [contains(@class,’post’)] is the253

detection pattern that worked, then we will try several relaxations of the second half of the expression,254

for instance, replacing @class with @id, ’posttitle’ with ’posthead’, h2 with div, etc. We255

favor relaxations that use parts from crawling actions in the knowledge base for other Web application256

types of the same general category (e.g., bulletin boards). Any successful relaxed expression will be still257

tested with a few more pages of the same Web application level.258

When a Web application level is not detected then an appropriate crawling strategy cannot be initiated,259

therefore the system first adapts the detection patterns. The idea here is the same as above: the system260

first collects all the candidate attributes, tag names and values; and then creates all possible combinations261

of relaxed expressions. For example, assume that the candidate set of attributes and values are: @class262

=’post’, @id=forumlist, @class=’bloglist’ with candidate set of tag names article ,div, etc.263

The set of relaxed expression will be generated by trying out each possible combination:264

// div [contains(@class,’post’)]265

Version July 31, 2014 submitted to Future Internet 10 of 24

Figure 3. Interaction of online analysis modules

// div [contains(@id,’forumlist’)]266

// div [contains(@class,’bloglist’)]267

and similarly for other tag names. If the system detects the Web application with any relaxed expression268

then the system will apply the crawling actions adaptation as described above.269

The AAH has reduced bandwidth, time, and storage (by requiring fewer HTTP requests for270

known Web applications, avoiding duplicates) using limited computational resources in the process.271

Application-aware crawling also helps adding semantic information to the ARCOMEM database. More272

details about the functioning and independent evaluation of the AAH are provided in [48,49].273

4.2. Online Analysis274

Within the online analysis, several modules analyze crawled Web objects in order to guide the crawler.275

The purpose of this process is to provide scores for detected URLs. These scores are used for guiding276

the crawler in order to obtain a focused crawl with respect to the intelligent crawl definition (ICD). The277

main modules used within the online analysis are the AAH, the GATE platform for text analysis [50],278

and a prioritization module. The actual online processing consists of three phases which are displayed in279

Figure 3; within Figure 2 these phases are related to the connections between the online processing and280

the crawler.281

1. The AAH performs preprocessing steps on the crawled Web pages;282

2. Online analysis modules run on relevant document parts;283

3. The output of online analysis modules is aggregated and a score for each URL is provided.284

A more detailed description of the these steps is provided in the remainder of this section.285

In the first phase we run the AAH on the Web page to detect regions of interest in the document286

and discard irrelevant parts. A detailed description of the functions provided by the AAH is given in287

Version July 31, 2014 submitted to Future Internet 11 of 24

Section 4.1. The input document is split into one or more document parts. Each document part is288

processed separately from now on.289

In the second phase the online analysis modules are run on the content of the document part. Currently290

we use textual analysis modules using GATE, a URL scoring module using URL patterns and a simple291

spam link filter using a black list. Additional modules can be added easily. The textual analysis module292

performs basic NLP pre-processing on the text and allows the extraction of relevant entities.293

The version of GATE used within the Online Analysis is a lightweight version of GATE since the294

performance and the processing time needs to be as fast as possible. The tasks carried out by the295

GATE component comprise basic linguistic processing steps, language identification and Named Entity296

Recognition (NER). In contrast to the use of the basic GATE functions which are needed to create297

word vectors describing the crawled objects, the use of the NER module is optional. With the NER298

module disabled the processing time of a Web document was reduced by about 70%. Based on these299

observations we disabled the NER module in the online phase for most crawls and moved this part to300

the offline analysis, where performance aspects are not as critical as during the online phase. Using the301

extracted keywords and the given crawl specification we calculate a score based on the cosine similarity302

of the term vectors. The matching is run at several granularities: whole document, paragraph around303

anchor, and only anchor text. This allows us to boost link anchors that are closer to keyword or entity304

matches.305

Each analysis module can produce a score for the current document and one for each out-link. Some306

analysis modules (e.g., the URL analyzers) omit the document score, while others can only provide307

document scores (e.g., the text analysis). In the latter case the document score is propagated to each308

out-link contained in the analyzed document.309

The final phase of the online analysis is the priority aggregation: The scores provided by the individual310

analysis modules are aggregated into one final score for each out-link. Here we use a weighted average311

over the individual scores using weights provided by the users.312

4.3. Large-Scale Crawler313

The large-scale crawler is a distributed crawler, implemented by the Internet Memory Foundation314

(IMF). It retrieves content from the Web and stores it in WARC files, that can optionally be loaded into315

an HBase repository. Its main initial aim was scalability: crawling at a fast rate from the start and slowing316

down as little as possible as the amount of visited URLs grows to billions, all while observing politeness317

conventions (rate regulation, robots.txt compliance, etc.). This objective is achieved by incorporating318

recent developments in data structures and design options for crawlers [14][15]. It ran a crawl on 19319

virtual machines with 8 cores and 32 GiB of RAM each for three weeks. The rate was kept over 2000320

HTTP requests per second for the whole duration of the crawl for a total of close to four billion URLs321

crawled.322

The crawler does not require distributing a static node list to all cluster instances nor does it require323

external utilities to copy lists of URLs as they get discovered. It also detects nodes joining or leaving the324

cluster and changes the URL distribution mapping to account changes without any manual intervention.325

Version July 31, 2014 submitted to Future Internet 12 of 24

Figure 4. Crawler architecture

Figure 4 depicts the main processes on each cluster node. The rectangles depict many processes with326

the same function. The ovals represent individual processes or subsystems made of many processes.327

The fetcher controller is in charge of spawning fetchers, limited to spawning as many as is allowed328

by the configuration (mainly to respect memory constraints) and by the availability of URLs in the URL329

store. It asks the URL store for a batch of URLs all belonging to the same pay level domain (PLD,330

approximated by searching for the longest applicable public suffix and adding one more level), resolves331

the domain name to an IP address and ensures no other fetcher in the entire cluster is crawling this IP332

address. It then spawns a fetcher and passes it the URL batch. The fetcher gets the robots.txt file and333

starts crawling all the allowed URLs, respecting the required delay between each fetch.334

For each resource, three main steps are performed:335

• fetching (HTTP request);336

• analysing the document according to its type in search of new URLs. It may also run other analyses337

which may be useful at run time; for example, language identification;338

• writing the content plus extracted or derived information into a WARC file (depending on the339

configuration and filtering settings);340

• filtering according to the scope configuration before sending to the distribution module.341

When a fetcher has processed all of its URLs, it exits and the fetcher controller will try to replace it342

with a new fetcher and a fresh batch of URLs.343

The distribution module maintains a consistent hashing ring that reflects the current cluster topology.344

It forwards URLs to the appropriate node for them to be queued in the local URL store.345

The URL distribution being based on the pay level domain, it is easy to guarantee that no more346

than one fetcher in the whole cluster will be crawling a specific host at any time. However, there is no347

guarantee that different pay level domains are not mapped to the same IP address. To ensure rate control348

for IP addresses, we use a global IP address registry.349

The WARC files get copied asynchronously to a specific directory in a Hadoop file system (HDFS).350

A periodic import task will insert the content from the HDFS into HBase. This makes the crawler quite351

independent from the storage system. In particular, the crawler can continue to work without HBase for352

as long as it has available disk space.353

Version July 31, 2014 submitted to Future Internet 13 of 24

To follow the numerous events occurring inside the crawler as tens of thousands of concurrent354

processes run, a flexible system is necessary. We have implemented node-local filtering of events by355

subsystem and severity, and centralized storage in a full text index that allows complex queries and356

advanced graphical representations.357

The IMF crawler can perform multiple crawls concurrently, supporting one URL store and a358

configuration (scope functions, archival functions, etc.) for each concurrent crawl, while having a single359

fetcher pool. This feature guarantees that politeness is respected across all crawls while allowing to360

crawl concurrently as many domains as possible.361

The latest developments are geared towards greater flexibility to add ease-of-use and ‘archive quality’362

to the crawler’s scalability.363

The large-scale crawler supports HTTPS, can stream large files, retries on server failures, detects364

the real MIME type and language of documents, extracts many metadata from HTML pages (such as365

outlinks with type, anchor text, etc.). It has a fast C implementation of a comprehensive and configurable366

URL canonicalization. It provides advanced scoping functions that can be combined at will, allowing,367

for instance, to make decisions based on the language of a page or the whole path that led to it. It also368

employs a fully-fledged and extensible per-domain configuration framework with parameters including369

budget, minimum and maximum delay between two fetches. Crawler fetchers subscribe to updates of370

parameter values and use the new configuration immediately. It detects traps by analyzing URLs and371

checking for similar content.372

4.4. Adaptive Heritrix373

In addition to the large-scale crawler developed by IMF, we have also investigated to what extent374

Heritrix, a widely-used open source crawler [13], can be adapted to ARCOMEM’s crawling architecture.375

Heritrix implements a typical centralized crawling process, where a URL is prioritized only when it is376

added to the frontier. In order to adapt Heritrix to the needs of ARCOMEM, we have implemented377

a frontier that supports updating the priorities of already scheduled URLs and receiving scored URLs378

from external processes, possibly running on different servers. As a result, Heritrix can be used as379

a fetching service for selective Web harvesting. Overall, we have extended Heritrix with a range of380

functionalities, regarding the storing of crawled content, the extraction of anchor text with links, etc. All381

the modifications are available as open source software in the releases of the ARCOMEM project. In382

this article we focus on the two main features mentioned above.383

The default frontier of Heritrix employs a Berkeley DB backed hash table for storing URLs, typically384

grouped according to the domain or host they belong to. The key of a URL’s record in the frontier is385

computed based on its domain, a flag indicating whether the URL should be crawled immediately, its386

priority (or precedence in Heritrix terminology), and a counter, which increases for every URL that is387

inserted in the frontier (Figure 5). The frontier implementation provides a next method for obtaining388

the next URL to crawl from a given domain or host, but there is no method to update the priority of an389

already scheduled URL.390

To overcome this limitation, we have implemented a frontier that extends the default frontier of391

Heritrix, adding a hash table that maps a URL already scheduled to the key with which it was scheduled.392

Version July 31, 2014 submitted to Future Internet 14 of 24

Figure 5. The structure of the key corresponding to an entry of a URL scheduled for crawling
in the default frontier of Heritrix

Class Key
Scheduling
Directive

Precedence Ordinal

k bytes 1 byte 1 byte 6 bytes

Figure 6. Example of Adaptive Heritrix frontier data structures and URL index

http://a.b.c/index.html

http://a.b.c/copyright.html

http://a.b.c/products.html

a.b.c | 0 | 64 | 3

a.b.c | 3 | 48 | 5

a.b.c | 3 | 48 | 6

a.b.c | 0 | 64 | 3

a.b.c | 3 | 48 | 5

a.b.c | 3 | 48 | 6

a.b.c | 0 | 0 | 0

CrawllURI http://a.b.c/index.html ...

CrawlURI http://a.b.c/copyright.html ...

CrawlURI http://a.b.c/products.html ...

Figure 7. Example of updating the priority of a URL in the frontier of Adaptive Heritrix

http://a.b.c/index.html

http://a.b.c/copyright.html

http://a.b.c/products.html

a.b.c | 0 | 64 | 3

a.b.c | 3 | 48 | 5

a.b.c | 3 | 32 | 6

a.b.c | 0 | 64 | 3

a.b.c | 3 | 32 | 6

a.b.c | 3 | 48 | 5

a.b.c | 0 | 0 | 0

CrawllURI http://a.b.c/index.html ...

CrawlURI http://a.b.c/copyright.html ...

CrawlURI http://a.b.c/products.html ...

Version July 31, 2014 submitted to Future Internet 15 of 24

When we need to update the priority of a URL already scheduled, we use this hash table to locate the393

corresponding record from the frontier, update its priority, recalculate a key and insert it in the frontier394

data structure at a new position. The fact that Heritrix employs an increasing counter to calculate the key395

for each URL ensures that there are no collisions.396

Figure 6 shows as an example the state of the frontier during a crawl for a domain a.b.c, where397

there are three URLs queued for crawling. The first one is flagged for immediate downloading and has a398

priority of 64, while the other two URLs have equal priority of 48. Upon an update of the priority of the399

URL http://a.b.c/copyright.html from 48 to 32, the order of the two URLs is reversed, as400

shown in Figure 7.401

In the frontier we have developed, when a URL u is scheduled for crawling, first we have to check402

whether the hash table mapping URLs to entries in the frontier contains an entry for u. If u is found, then403

we update the priority, otherwise we need to check whether u has already been crawled.404

The second feature we discuss enables Heritrix to receive prioritized URLs from other processes.405

Heritrix provides an action directory, where processes having access to the same filesystem can write files406

with seeds or URLs to be crawled. In order to fit Heritrix into the ARCOMEM crawling architecture and407

receive URLs with priority scores from the online analysis phase, we have implemented a Web service408

which receives scored URLs in an ARCOMEM-specific JSON format. In the simplest case, the required409

information is an identifier for the crawl, the URL, a score in the range [0, 1], and optionally a flag410

indicating whether this URL should be blacklisted, i.e., not crawled at all. The developed Web service411

enables Heritrix to receive links from any external process or even from other instances of Heritrix,412

facilitating the distributed operation of the crawler. The URL score is transformed from the range [0, 1]413

to an integer, as expected by Heritrix.414

5. Evaluation415

Since the ARCOMEM crawling architecture departs from the standard crawling architectures [7], it416

is important to evaluate its impact on the effectiveness of a crawler. In this section we first evaluate417

how adaptive and batch prioritization affects the performance of a crawler based on a set of simulation418

experiments. Next, we compare a crawl performed by using the ARCOMEM crawling architecture to a419

crawl performed by using the standard Heritrix crawler.420

5.1. Adaptive and batch prioritization421

We assume a baseline crawler implementing a best-first crawling strategy. We represent the topic of422

the crawl with a topic vector, which is defined as follows. For each seed Web page, we download its423

content and we create a term vector from it. The topic vector corresponds to the vector sum of the seed424

page term vectors. We assume that URLs are prioritized according to their similarity to the topic vector.425

More specifically, the priority of a URL u is computed as the average of: a) the cosine similarity between426

the content of Web page p in which u was found and the topic vector and; b) the cosine similarity between427

the anchor text of the out-link from p to u and the topic vector.428

An adaptive crawler can update the score of an already scheduled Web page using a function such as429

MAX, SUM, AVG. For example, the function MAX updates the priority of an already scheduled Web430

Version July 31, 2014 submitted to Future Internet 16 of 24

page if the new priority was higher than the existing one. The function LAST always updates the score431

to the most recently computed one and the function FIRST is equivalent to the baseline crawler.432

A crawler supporting batch prioritization schedules links for crawling only after having downloaded433

a batch of Web pages. In such a case, a URL can be discovered in many Web pages, so the cosine434

similarities are computed between the topic vector and the sum of the vectors of Web pages in which the435

URL was found, or the sum of the anchor text vectors associated with links pointing to the URL. In this436

setting, we also simulate a crawler that fetches the k pages with the highest priority from each domain,437

instead of fetching just one Web page with the highest priority.438

To evaluate the focused crawler architectures, we perform simulated crawls on datasets created with439

three topics of DMOZ. We create three random samples of 20 seeds for each of the topics and the results440

we obtain for each configuration are the average of 9 simulations. For each set of seeds, we simulate441

a crawl of 10,000 Web pages. The topic vector we use to compute similarities between each topic and442

the crawled Web pages corresponds to the vector sum of the seed term vectors. For the evaluation of the443

results, we employ three measures: a) harvest ratio, which we define as the ratio of Web pages whose444

cosine similarity with the topic vector is greater than 0.333 over all crawled Web pages; b) average445

similarity of crawled pages; and 3) fraction of DMOZ subtopics with at least one crawled page.446

Table 1 shows the evaluation results for adaptive prioritization with different priority update functions.447

The highest harvest ratio is achieved with the AVG function, while LAST achieves the highest fraction448

of DMOZ subtopics.449

Table 1. Results of simulated adaptive crawls

Update function Harvest ratio Average Similarity DMOZ topics

FIRST 0.3317 0.2945 0.4979
AVG 0.3609 0.3024 0.5779
MAX 0.3388 0.2967 0.5270
SUM 0.2679 0.2759 0.4650
LAST 0.3404 0.2961 0.5985

We also consider an additional parameter related to how the simulated crawler schedules links to450

crawl. For each queue, which corresponds to a domain, the crawler selects the bl URLs with the highest451

priority to crawl. In all previous experiments, bl = 1, meaning that each time the crawler selects the452

URL with the highest priority. For efficiency reasons, crawlers use higher values for the parameter bl. In453

the case of Heritrix, bl corresponds to the parameter balance per queue.454

In our experiments, we test the values bl = 1 and bl = 5. The evaluation results for batch priority455

updating are shown in Table 2. We can observe that when increasing the value of bl, the effectiveness of456

the crawler drops, both in the case of a baseline crawler and an adaptive crawler (first 4 rows in Table 2).457

However, the combination of a higher bl value with batch updating performs better than an adaptive458

crawler with bl = 5 (rows 4 and 6 in Table 2).459

5.2. Comparison of ARCOMEM versus standard crawl460

Version July 31, 2014 submitted to Future Internet 17 of 24

Table 2. Results from simulated crawls with and without batch priority updating

Batch bl Update function Harvest Ratio Average Similarity DMOZ topics

No 1 FIRST 0.3317 0.2945 0.4979
No 5 FIRST 0.2948 0.2819 0.4677
No 1 AVG 0.3609 0.3024 0.5779
No 5 AVG 0.3200 0.2897 0.5420
Yes 1 AVG 0.3556 0.3013 0.5260
Yes 5 AVG 0.3347 0.2952 0.5176

For evaluating the quality of the crawls in terms of how focused the collected documents are, we461

conducted a series of experiments. The main task of these experiments is to give an overview of the462

number of the crawled documents match the keywords given by the ICD, and how similar the textual463

content of the crawled documents is compared to the seed documents. Since there is no ground truth464

for the actual relevance of a document we have investigated some alternatives on how to measure the465

relevance of a document with respect to the given crawl definition. The dataset used for the experiment466

consists of two different crawls in the financial domain. One crawl was performed using the described467

ARCOMEM architecture while the other crawl is a standard Heritrix crawl.468

The results we are presenting in this section are based on the document score generated by the Solr469

scoring module2. This score is computed as follows. For each crawl, we create an inverted index of470

the crawled documents. Next, we form a query with the keywords provided by the ICD, or the most471

representative keywords from the textual content of the seed documents. The idea of these settings is to472

find documents with similar textual content to the ICD keywords or to the content of the seed documents.473

We assume that the documents matching the query are relevant and that their relevance is represented by474

their similarity to the query, or in other words, their retrieval status value (RSV).475

Since the standard Solr scoring is based on TF/IDF, the whole document collection is taken into476

account for normalization. One drawback of this method may arise if all analyzed documents contain477

the relevant keywords. The IDF score which is used for normalization will be relatively low if many478

documents of the collection contain these words, and due to this, relevant documents may get a lower479

similarity score. In order to deal with this factor we checked how many of the documents contained480

our keywords. The results are shown in Table 3. The ARCOMEM crawl consist of 234,749 documents481

and the Heritrix Crawl contained 366,806 documents. In order to make both crawls comparable we482

analyzed the percentage of documents containing keywords from the ICD. The results show that most483

of the keywords do not appear inside most documents which allows us to use a TF/IDF based scoring484

approach. It becomes also visible that the percentage of occurrences of the keywords from the ICD in485

the crawled documents is in nearly all cases higher when crawling with the ARCOMEM framework than486

when crawling with Heritrix.487

2 http://lucene.apache.org/core/

Version July 31, 2014 submitted to Future Internet 18 of 24

Table 3. Percentage of crawled documents containing keywords from ICD

Keyword ARCOMEM Heritrix

Antonis Samaras 0.0175 0.0052
European Union 0.6011 0.4346

EU 1.7870 1.8986
financial crisis 0.8443 0.3645

Eurozone 0.3157 0.1238
bailouts 0.0826 0.0393

austerity 0.3838 0.1638
measures 1.4880 0.7993

strategy 1.9123 0.9362
growth 3.9319 1.9752
public 6.7357 3.5990

investments 1.3406 0.5545

The results of the experiments to assess the quality of the ARCOMEM and Heritrix crawls are shown488

in Tables 4 and 5, respectively. We compared four different settings for describing what makes a489

document relevant. These settings differ in how the terms are selected and the number of terms that490

are used for calculating the similarity score of crawled documents to the topic of the crawl. For the491

experiment in the first row (ICD), we use the terms from the ICD. For the experiments in the last three492

rows, we choose the terms based on their TF/IDF value for the seed documents; maxQt=10 indicates493

that the 10 most representative keywords are taken into account, which gives a very narrow definition494

of relevance. Additionally we used 50 and 100 words giving us a broader definition of relevance, since495

more words are considered to be important.496

Table 4. Statistics on ARCOMEM Crawl

Ground Relevant Average Maximum Standard
Truth Documents (%) Similarity Similarity Deviation

ICD 14.29 0.0178 0.8440 0.0426
Seeds maxQt=10 10.81 0.0179 0.4830 0.0263
Seeds maxQt=50 44.06 0.0049 0.4299 0.0149

Seeds maxQt=100 48.63 0.0060 0.5279 0.0172

When comparing the results of the two crawls we see some obvious differences. The maximum497

similarity score per document was always the highest inside the ARCOMEM crawl, no matter which498

ground truth was chosen. For the first two setups, with a limited number of relevant keywords, the499

percentage of relevant documents was much higher inside the ARCOMEM crawl; when many different500

keywords are taken into account this changes. In contrast to that, the average similarity of the documents501

was higher for the Heritrix crawl when only few keywords are considered. This can be explained by502

Version July 31, 2014 submitted to Future Internet 19 of 24

Table 5. Statistics on Heritrix Crawl

Ground Relevant Average Maximum Standard
Truth Documents (%) Similarity Similarity Deviation

ICD 7.61 0.0196 0.7580 0.0440
Seeds maxQt=10 6.14 0.0175 0.2957 0.0264
Seeds maxQt=50 56.26 0.0026 0.3401 0.0114

Seeds maxQt=100 59.13 0.0021 0.3122 0.0099

looking at the absolute number of relevant documents for the different setups. The focused crawler503

found many more documents related to the small set of keywords. As a result, the average relevance has504

dropped, since this is calculated based only on the relevant documents.505

Beside the results describing the relevance of all the crawled documents, we also analyzed how the506

relevance evolves over time. Figure 8 shows how the relevance of the crawled documents evolves over507

time. The relative relevance is calculated using the average similarity over 1000 crawled documents and508

dividing this value by the maximum of the averages.509

Figure 8. Focused (ARCOMEM) and unfocused (Heritrix) crawling over time

We see that the relevance of the crawled documents exhibits large fluctuations during the crawl. While510

the Heritrix crawl does not show a certain tendency over the crawl, we see that the relative relevance of511

the documents of the ARCOMEM crawl increases up to the maximum after around 34,000 documents512

and then drops. Overall the relevance of the ARCOMEM based crawl was higher for most of the time.513

Since one of the ideas of the ARCOMEM architecture is to use social networks to get additional514

content for the crawl we also used the described methods for analyzing the quality of links posted within515

Twitter. For this experiment we collected a total of 14,703 tweets related to our topic, out of which516

7,677 contained at least one URL. The content of these URLs was crawled and indexed in the same way517

Version July 31, 2014 submitted to Future Internet 20 of 24

as we did it with the standard Heritrix and ARCOMEM crawl. Overall we performed this experiment518

on a set of 2.2 million crawled documents. The overall number of documents was much larger, but for519

this experiment we only took documents with textual content into account. Table 6 shows some basic520

statistics on the crawl.521

Table 6. Statistics on Twitter based crawl

Ground Relevant Average Maximum Standard
Truth Documents (%) Similarity Similarity Deviation

ICD 8.16 0.2435 2.1465 0.2299
Seeds maxQt=10 19.87 0.0348 1.7057 0.0805
Seeds maxQt=50 58.51 0.0180 1.5738 0.0489

Seeds maxQt=100 66.67 0.0193 1.6462 0.0493

We can see that the numbers for the percentage of relevant documents are comparable to the Heritrix522

and ARCOMEM crawls, except the number of relevant documents for the top 10 words from the seeds523

are much higher with 19%. The numbers for the average relevance and maximum relevance are not524

directly comparable with the results from the two other crawls because this crawl was stored in a different525

index and due to that the TF/IDF values are calculated based on different corpora. Nevertheless we can526

still see some parallels between the crawls: the average relevance is still the highest for documents527

related to the ICD and relative order of the other values is also comparable to the previous crawls.528

Figure 9. Twitter based crawl over time

Figure 9 shows the evolution of the relative relevance of the crawled documents based on the 50 most529

representative terms from the seed set. Compared to the two previous crawls we cannot see the strong530

tendency of a dropping relevance over time.531

Version July 31, 2014 submitted to Future Internet 21 of 24

6. Conclusions532

The scale of the Web, the volatility of information found in it, as well as the emergence of social533

media, require a shift in the way Web archiving is performed. Towards this goal, the ARCOMEM project534

has developed a scalable and effective framework that allows archivists to leverage social media and535

guide crawlers to collect both relevant and important information for preservation and future reference.536

In this article, we have presented ARCOMEM’s crawling architecture, providing a detailed537

description of its main modules for extracting structured information from Web applications and538

prioritizing the URLs to be crawled. We have also outlined the main features of a large-scale distributed539

crawler, which can collect the content from billions of URLs while maintaining a high download rate.540

The architecture we have described enables us to use either the large-scale crawler or an enhanced version541

of Heritrix, for which we have described the required modifications we have implemented to support the542

adaptive prioritization of URLs and the scheduling of URLs from remote processes.543

Our experimental results show that the adaptive and batch prioritization, which are employed in the544

proposed crawling architecture, are effective in acquiring relevant content. When comparing the quality545

of a crawl performed with the ARCOMEM architecture against a crawl performed with Heritrix, we have546

seen that the ARCOMEM crawler has downloaded earlier more relevant content. Overall, the proposed547

crawling architecture is both extensible, by adding new modules to expand the analysis, and scalable,548

offering a new approach to crawling content for Web archiving.549

Acknowledgements550

This work was funded by the European Commission under grant agreement n. 270239 (ARCOMEM).551

Conflicts of Interest552

Thomas Risse is co-editor of the special issue on Archiving Community Memories.553

References554

1. Koehler, W. A longitudinal study of Web pages continued: a consideration of document555

persistence. Inf. Res. 2003, 9.556

2. Twitter. Historical data not working. https://dev.twitter.com/discussions/2483, 2011.557

3. Masanès, J. Web Archiving; Springer-Verlag New York, Inc.: Secaucus, NJ, USA, 2006.558

4. Sigurðsson, K. Incremental crawling with Heritrix. Proceedings of the 5th International Web559

Archiving Workshop (IWAW’05), 2005.560

5. Risse, T.; Dietze, S.; Peters, W.; Doka, K.; Stavrakas, Y.; Senellart, P. Exploiting the Social and561

Semantic Web for Guided Web Archiving. In Theory and Practice of Digital Libraries; Zaphiris,562

P.; Buchanan, G.; Rasmussen, E.; Loizides, F., Eds.; Springer, 2012; Vol. 7489, pp. 426–432.563

6. Plachouras, V.; Carpentier, F.; Masanés, J.; Risse, T.; Senellart, P.; Siehndel, P.; Stavrakas, Y. An564

Architecture for Selective Web Harvesting: The Use Case of Heritrix. Proceedings of the 1st565

International Workshop on Archiving Community Memories, 2013.566

7. Olston, C.; Najork, M. Web Crawling. Found. Trends Inf. Retr. 2010, 4, 175–246.567

https://dev.twitter.com/discussions/2483

Version July 31, 2014 submitted to Future Internet 22 of 24

8. Brin, S.; Page, L. The Anatomy of a Large-scale Hypertextual Web Search Engine. Proceedings568

of the 7th International Conference on World Wide Web; Elsevier Science Publishers B. V.:569

Amsterdam, The Netherlands, The Netherlands, 1998; WWW7, pp. 107–117.570

9. Burner, M. Crawling towards eternity: Building an archive of the World Wide Web. Web571

Techniques Magazine 1997, 2.572

10. Heydon, A.; Najork, M. Mercator: A Scalable, Extensible Web Crawler. World Wide Web 1999,573

2, 219–229.574

11. Najork, M.; Heydon, A. Handbook of Massive Data Sets; Kluwer Academic Publishers: Norwell,575

MA, USA, 2002; chapter High-performance Web Crawling, pp. 25–45.576

12. Shkapenyuk, V.; Suel, T. Design and implementation of a high-performance distributed Web577

crawler. Proceedings of the 18th International Conference on Data Engineering, 2002, pp.578

357–368.579

13. Mohr, G.; Kimpton, M.; Stack, M.; Ranitovic, I. Introduction to heritrix, an archival quality web580

crawler. Proceedings of the 4th International Web Archiving Workshop (IWAW’04); , 2004.581

14. Boldi, P.; Codenotti, B.; Santini, M.; Vigna, S. UbiCrawler: A Scalable Fully Distributed Web582

Crawler. Softw. Pract. Exper. 2004, 34, 711–726.583

15. Lee, H.T.; Leonard, D.; Wang, X.; Loguinov, D. IRLbot: Scaling to 6 Billion Pages and Beyond.584

ACM Trans. Web 2009, 3, 8:1–8:34.585

16. Ntoulas, A.; Cho, J.; Olston, C. What’s New on the Web?: The Evolution of the Web from a586

Search Engine Perspective. Proceedings of the 13th International Conference on World Wide587

Web; ACM: New York, NY, USA, 2004; WWW ’04, pp. 1–12.588

17. Fetterly, D.; Manasse, M.; Najork, M.; Wiener, J. A Large-scale Study of the Evolution of Web589

Pages. Proceedings of the 12th International Conference on World Wide Web; ACM: New York,590

NY, USA, 2003; WWW ’03, pp. 669–678.591

18. Cho, J.; Garcia-Molina, H. The Evolution of the Web and Implications for an Incremental592

Crawler. Proceedings of the 26th International Conference on Very Large Data Bases; Morgan593

Kaufmann Publishers Inc.: San Francisco, CA, USA, 2000; VLDB ’00, pp. 200–209.594

19. Olston, C.; Pandey, S. Recrawl Scheduling Based on Information Longevity. Proceedings of the595

17th International Conference on World Wide Web; ACM: New York, NY, USA, 2008; WWW596

’08, pp. 437–446.597

20. Pandey, S.; Dhamdhere, K.; Olston, C. WIC: A General-purpose Algorithm for Monitoring Web598

Information Sources. Proceedings of the 30th International Conference on Very Large Data599

Bases. VLDB Endowment, 2004, VLDB ’04, pp. 360–371.600

21. Gouriten, G.; Maniu, S.; Senellart, P. Scalable, Generic, and Adaptive Systems for Focused601

Crawling. Proceedings of 25th ACM Conference on Hypertext and Social Media; ACM: New602

York, NY, USA, 2014; HT ’13.603

22. Tang, T.T.; Hawking, D.; Craswell, N.; Griffiths, K. Focused Crawling for Both Topical604

Relevance and Quality of Medical Information. Proceedings of the 14th ACM International605

Conference on Information and Knowledge Management; ACM: New York, NY, USA, 2005;606

CIKM ’05, pp. 147–154.607

Version July 31, 2014 submitted to Future Internet 23 of 24

23. Menczer, F.; Pant, G.; Srinivasan, P.; Ruiz, M.E. Evaluating Topic-driven Web Crawlers.608

Proceedings of the 24th Annual International ACM SIGIR Conference on Research and609

Development in Information Retrieval; ACM: New York, NY, USA, 2001; SIGIR ’01, pp.610

241–249.611

24. Chakrabarti, S.; van den Berg, M.; Dom, B. Focused crawling: a new approach to topic-specific612

Web resource discovery. Computer Networks 1999, 31, 1623 – 1640.613

25. Halkidi, M.; Nguyen, B.; Varlamis, I.; Vazirgiannis, M. THESUS: Organizing Web document614

collections based on link semantics. The VLDB Journal 2003, 12, 320–332.615

26. Ehrig, M.; Maedche, A. Ontology-focused Crawling of Web Documents. Proceedings of the616

2003 ACM Symposium on Applied Computing; ACM: New York, NY, USA, 2003; SAC ’03,617

pp. 1174–1178.618

27. Ahlers, D.; Boll, S. Adaptive Geospatially Focused Crawling. Proceedings of the 18th ACM619

Conference on Information and Knowledge Management; ACM: New York, NY, USA, 2009;620

CIKM ’09, pp. 445–454.621

28. Gao, W.; Lee, H.C.; Miao, Y. Geographically Focused Collaborative Crawling. Proceedings622

of the 15th International Conference on World Wide Web; ACM: New York, NY, USA, 2006;623

WWW ’06, pp. 287–296.624

29. De Bra, P.M.E.; Post, R.D.J. Information Retrieval in the World-Wide Web: Making Client-based625

Searching Feasible. Selected Papers of the 1st Conference on World-Wide Web; Elsevier Science626

Publishers B. V.: Amsterdam, The Netherlands, The Netherlands, 1994; pp. 183–192.627

30. Hersovici, M.; Jacovi, M.; Maarek, Y.S.; Pelleg, D.; Shtalhaim, M.; Ur, S. The shark-search628

algorithm. An application: tailored Web site mapping. Computer Networks and ISDN Systems629

1998, 30, 317–326.630

31. Almpanidis, G.; Kotropoulos, C.; Pitas, I. Combining Text and Link Analysis for Focused631

crawling-An Application for Vertical Search Engines. Inf. Syst. 2007, 32, 886–908.632

32. Diligenti, M.; Coetzee, F.; Lawrence, S.; Giles, C.L.; Gori, M. Focused Crawling Using Context633

Graphs. Proceedings of the 26th International Conference on Very Large Data Bases; Morgan634

Kaufmann Publishers Inc.: San Francisco, CA, USA, 2000; VLDB ’00, pp. 527–534.635

33. Liu, H.; Janssen, J.; Milios, E. Using HMM to Learn User Browsing Patterns for Focused Web636

Crawling. Data Knowl. Eng. 2006, 59, 270–291.637

34. Partalas, I.; Paliouras, G.; Vlahavas, I. Reinforcement Learning with Classifier Selection for638

Focused Crawling. Proceedings of the 2008 Conference on Artificial Intelligence; IOS Press:639

Amsterdam, The Netherlands, The Netherlands, 2008; pp. 759–760.640

35. Johnson, J.; Tsioutsiouliklis, K.; Giles, C.L. Evolving Strategies for Focused Web Crawling.641

Proceedings of the 20th International Conference on Machine Learning; Fawcett, T.; Mishra, N.,642

Eds. AAAI Press, 2003, pp. 298–305.643

36. Zheng, H.T.; Kang, B.Y.; Kim, H.G. An ontology-based approach to learnable focused crawling.644

Information Sciences 2008, 178, 4512 – 4522.645

37. Bergman, M.K. The Deep Web: Surfacing Hidden Value, 2000.646

38. Barbosa, L.; Freire, J. Siphoning Hidden-Web Data through Keyword-Based Interfaces.647

Proceedings of the 19th Brazilian Symposium on Databases, 2004, pp. 309–321.648

Version July 31, 2014 submitted to Future Internet 24 of 24

39. Madhavan, J.; Ko, D.; Kot, L.; Ganapathy, V.; Rasmussen, A.; Halevy, A. Google’s Deep Web649

crawl. Proc. VLDB Endow. 2008, 1, 1241–1252.650

40. Arvidson, A.; Persson, K.; Mannerheim, J. The Kulturarw3 Project - The Royal Swedish Web651

Archiw3e - An example of “complete” collection of web pages. Proceedings of the 66th IFLA652

Council and General Conference, 2000.653

41. Bailey, S.; Thompson, D. UKWAC: Building the UK’s First Public Web Archive. D-Lib654

Magazine 2006, 12.655

42. Cathro, W.; Webb, C.; Whiting, J. Archiving the Web: The PANDORA Archive at the National656

Library Australia. National Library of Australia Staff Papers 2009.657

43. Spaniol, M.; Denev, D.; Mazeika, A.; Weikum, G.; Senellart, P. Data Quality in Web Archiving.658

Proceedings of the 3rd Workshop on Information Credibility on the Web; ACM: New York, NY,659

USA, 2009; WICOW ’09, pp. 19–26.660

44. Denev, D.; Mazeika, A.; Spaniol, M.; Weikum, G. SHARC: Framework for Quality-conscious661

Web Archiving. Proc. VLDB Endow. 2009, 2, 586–597.662

45. Gomes, D.; Miranda, J.a.; Costa, M. A Survey on Web Archiving Initiatives. Proceedings663

of the 15th International Conference on Theory and Practice of Digital Libraries: Research664

and Advanced Technology for Digital Libraries; Springer-Verlag: Berlin, Heidelberg, 2011;665

TPDL’11, pp. 408–420.666

46. Tahmasebi, N.; Gossen, G.; Kanhabua, N.; Holzmann, H.; Risse, T. NEER: An Unsupervised667

Method for Named Entity Evolution Recognition. Proceedings of the 24th International668

Conference on Computational Linguistics; Kay, M.; Boitet, C., Eds. Indian Institute of669

Technology Bombay, 2012, COLING’ 12, pp. 2553–2568.670

47. Plachouras, V.; Stavrakas, Y.; Andreou, A. Assessing the Coverage of Data Collection Campaigns671

on Twitter: A Case Study. OTM Workshops; Demey, Y.T.; Panetto, H., Eds. Springer, 2013, Vol.672

8186, Lecture Notes in Computer Science, pp. 598–607.673

48. Faheem, M.; Senellart, P. Intelligent and Adaptive Crawling of Web Applications for Web674

Archiving. Proceedings of the 13th International Conference on Web Engineering (ICWE);675

Daniel, F.; Dolog, P.; Li, Q., Eds. Springer Berlin Heidelberg, 2013, Vol. 7977, Lecture Notes in676

Computer Science, pp. 306–322.677

49. Faheem, M.; Senellart, P. Demonstrating intelligent crawling and archiving of web applications.678

Proceedings of the 22nd ACM International Conference Information and Knowledge Manage-679

ment; ACM: New York, NY, USA, 2013; CIKM ’13, pp. 2481–2484.680

50. Cunningham, H.; Maynard, D.; Bontcheva, K.; Tablan, V.; Aswani, N.; Roberts, I.; Gorrell, G.;681

Funk, A.; Roberts, A.; Damljanovic, D.; Heitz, T.; Greenwood, M.A.; Saggion, H.; Petrak, J.; Li,682

Y.; Peters, W. Text Processing with GATE (Version 6); 2011.683

c© July 31, 2014 by the authors; submitted to Future Internet for possible open ac-684

cess publication under the terms and conditions of the Creative Commons Attribution license685

http://creativecommons.org/licenses/by/3.0/.686

	Introduction
	Related Work
	Crawling Architecture
	Crawling Level
	Online Processing Level
	Offline Processing Level
	Cross-Crawl Analysis Level
	Applications

	Module description
	Application-Aware Helper
	Online Analysis
	Large-Scale Crawler
	Adaptive Heritrix

	Evaluation
	Adaptive and batch prioritization
	Comparison of ARCOMEM versus standard crawl

	Conclusions

